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Chapter 1. Basic Concepts 
 

Theories guide data collection and interpretation. Testing hypotheses on whole 
populations is generally not possible.  
Conclusions must be taken from samples of subjects. Uncontrolled variations 
between subjects make that a sample never exactly represents the population. 
Testing hypothesis in these conditions is the purpose of Statistics, the science 
of variation. 

• theories and data  
• population and sample 
• variation 
• reference books 
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• Data and theories 
 
Science needs data but data alone are by no means  sufficient. Interpretation should be 
foresighted before collecting data, by choosing a model, or a theory. In its simplest form, a 
theory is simply the list of factors which might affect the variable which will be measured. These 
factors should then be controlled in the study. This will have the advantage of increasing the 
performances of statistical tests. 
 
Models do not only give an advantage in statistical testing. They also guide research. In Popper’s 
words “Theories are nets: only the one who throws, will fish” (Popper1

Exempla : Signing theory (Paracelse, Swiss alchemist and physician, XVIth century). According 
to Schwartz

). This does not mean that 
the causal factor is within the model. Causal factors have however a better chance to be captured 
when research is guided by theory. Simply because the latter gives a framework for systematic 
collections of data. This is illustrated by the following example. 
 

2

This is illustrated in Fig.1 (Schwartz, p.42). 

, this theory states that: “...God, being sorry for having created diseases, should 
have given to man the plants allowing to combat them, by affecting a recognition sign to each.” 
(p.41, my translation). 
 

 
Paracelse, the man on the picture, said that the lungwort (left )with its white stains evoking the 
color of broncho-pulmonar diseases expectorations was a good remedy; that the nut (above) 
which imitates the brain hemispheres was good for this organ; that ginseng roots which look like 
thighs were aphrodisiacs; that colchicin (left), a remedy for gout, is extracted from colchic of 
which the bulb has the same form as a big toe.(Schwartz, p.42).  
 
Schwartz goes on by stating that “This model makes us smile today, but, chance helping, signing 
theory led to an important discovery: as the willows were growing with their feet in water, they 
should contain remedies against fever and rheumatism; one looked into their bark and found 
salicylic acid, from which aspirin is derived” (p.41). 
 
The issue of signing theory illustrates quite well the practical interest of models. They give a 
framework for progressing, although their truth is only provisional. According to Popper, science 
goes not by trying to verify theories but rather by trying to falsify theories. To falsify, or reject, 
hypotheses is also at the core of statistical methodology. 
 
•  Sample, population and variation 
 
Imagine that a new drug is supposed to cure every subject affected by a given disease. If the drug 
can be prescribed to every patient the theory will be rejected as soon as a patient is not cured. 
This is a situation where we do not need statistics to test an hypothesis. However, for different 
reasons (population size, money, detectability) we can generally not access whole populations. 
Often you only have a subset of the population or “sample” for testing hypotheses. Now the 

                                                 
1 Popper, K.  (1959) The Logic of Scientific Discovery. London: Hutchinson 
2 Schwartz, D. (1996) “Les modèles en biologie et en médecine” Pour la Science 227, 38-45. 
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problem is that a sample never represents exactly the population. Even if we take care of 
controlling a set of factors which might affect the outcome of the disease (age, sex, ...), not all the 
possible determinants can be controlled because some of them are simply unknown. The fact that 
uncontrolled factors vary from subject to subject makes that the determinants will never be 
equivalent in two different samples. The consequence of uncontrolled, or intrinsic, variation is 
that the “cure everybody” hypothesis might be false even if everybody is cured in a sample. It is 
there that we need statistical inference. Statistics is the science of variation (Fisher3

Statistics in Medicine. T.Colton (1974) Boston: Little Brown Cy. 

).  
 
Statistical inference allows to quantify the risk taken whenever a false hypothesis is not rejected, 
as in the above example with the “cure everybody” example. As we shall see this risk is called 
the “Type II” error (symbol β) and it is quantified with a probability. It is also possible to reject a 
true hypothesis, as we will see later with other examples. This is the “Type I” error ( α or p) 
which is also quantified with a probability. 
 
•  Reference books 
 
Basic statistics: 
 

 
Essentials of medical statistics. Kirkwood,B. (1998) . Oxford: Blackwell 
 
Nonparametric Statistics for the behavioral sciences. S.Siegel & N.J.Castellan (1988) New York: 
MCGraw-Hill. 
 
Adequacy of sample size in health studies. D.W.Lemeshow, D.W.Hosmer, J.Klar & S.W.Lwanga 
(1990) New York: J.Wiley. 
 
 
Advanced statistics: 
 
Statistical Methods for Medical Investigations. B.S.Everitt (1988) New York: Oxford Univ. 
Press / London: E. Arnold. 
 
Statistical Methods in Medical Research. F.Armitage (1971)  Blackwell Scientific Pub. 
 
Statistical methods for rates and proportions. J.L.Fleiss (1981) New York: J.Wiley. 
 
Statistics. W.Hays (1988). New York: Holt, Rinehart & Wilson. 
 
Logistic Regression. D.G. Kleinbaum. (1994) New York: Springer. 
 
Applied Logistic Regression. D.W. Hosmer & S. Lemeshow. (1989) New York: J.Wiley. 
 
 

                                                 
3 Fisher, R.A.(1958). Statistical methods for research workers. New York: Hafner. 
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Chapter 2. Sample description 

There are three basic types of variables: categorical (nominal or 
ordinal), quantitative (discrete or continuous) and binary. Data 
in a sample can be summarized with graphs and  descriptive 
parameters. Pie charts and bar charts apply to categorical 
variables. Histograms and cumulative frequency polygons apply 
to quantitative variables. The mode, median and mean are 
central tendency parameters. The mode applies to all variable 
types. The median is for all variable types displaying rank-order 
information (ordinal and quantitative variables). The mean is for 
quantitative variables. The proportion is a mean-like parameter 
for binary variables. The variance, standard-deviation (SD), and 
skewness coefficients are dispersion parameters. Variance and 
SD apply both to quantitative and binary variables. Skewness is 
for quantitative variables. 
 

• variable types 
• linear and exponential functions 
• mode, median, mean 
• pie chart, bar chart, histogram, cumulative polygon 
• variance, SD, skewness 
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• Variable types 
Data are used of capturing different aspects of the individual such as presence versus absence of 

hearing impairment, kind of impairment, degree of impairment, number of impaired per district, 

or hearing loss in decibels (dB). These are all different types of variables1

 

.  Variables such as 

presence versus absence of impairment, vaccinated or not, male or female, .... can only take two 

different values. These are binary (or “dummy”) variables. Variables such as kind of 

impairment, bloodgroup, method of delivery, .... can take several values, each corresponding to a 

different category. As the categories displayed by these variables cannot be ranked in a definite 

order, these are nominal variables. Variables such as degree of impairment, age group, health-

related quality of life (HRQOL), ....are also categorical. But, unlike nominal variables, they can 

be ranked in a specific order. These are ordinal variables. Variables such as number of impaired 

per district, number of childbirth per day, number of trypanosomes per blood sample, are 

quantitative in nature, although not continuous. These are discrete variables or “counts”. Finally, 

variables such as hearing loss in dB, systolic pressure, weight at birth,... are quantitative and 

continuous. 

Figure 2 gives variable types differences represented in a triangle. Basic distinctions are between 

categorical variables (either nominal or ordinal), quantitative variables (either discrete or 

continuous) and binary variables. As we shall see the latter share both categorical and 

quantitative properties. 

 

 

 

                                                 
1 Stevens, S.S.(1946) On the theory of scales of measurement. Science 103, 677-680. 

quantitative 

binary 

categorical 

nominal ordinal discrete continuous 
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• Linear and exponential functions 
                                                                                                Y 
                                         y3                               

                                                            

                                         y2                                                  

                                                                                                                          

                                         y1 

 

  

           x1   x2       x3 
 

One quantitative variable (Y) is a linear function of another quantitative variable (X) if any 

difference inYdivided by the related difference in X  is constant. Further, any ratio between two 

differences in Y is equal to the corresponding ratio in X. The exponential function is one of the 

many possible nonlinear relationship between two quantitative variables. This function is very 

useful for describing statistical distributions. The exponential function can be linearized by 

taking its natural logarithm (LN Y). 

 

Y = exp (4X + 1)
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LN (Y) = 4X + 1
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Linear function: 

    y = a + bx 
 
      b = slope = increase of y for 1 unit 
increase of x 
                                                              a = intercept = value of y when x=0 
 
Exponential functions       y = ex         where  e ≅ 2.72 
 
      y =  e(a + bx)  
 
Linearization of exponential functions 
 
    LN (y ) = a + bx 
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Properties of linear functions 
 
 y2 -    y1           y3 -    y2             y3 -    y1 
               =               =                  =  b   
 x2 -    x1          x3 -    x2              x3 -    x1 

 
 
 
 y2 -    y1            x2 -    x1                     
               = 
 y3 -    y2            x3 -    x2 
 
 
 y3 -    y1            x3 -    x1                     
               = 
 y3 -    y2            x3 -    x2 
 
 
 y2 -    y1            x2 -    x1                     
               = 
 y3 -    y1            x3 -    x1 

 
Example of application of linear function: The consumption of drugs in a hospital amounts 500 
000 B.F. for 100  patients, 560 000 B.F. for 120 patients  and 800 000 B.F. for 200 patients. On 
these grounds, calculate  the consumption for 160 patients ? 
 
N patients  Cost 
 
 100   500 kF 
 120   560 kF 
 200   800 kF 
 160   Unknown Cost(U.C.) 
 
 
Two examples of solutions (among many others) 
 
 
  U.C. - 560            800 - 500                              U.C. =    560  +   300*40/100  =  680      
                     = 
  160 - 120             200 - 100 
 
 
 U.C. - 500            160 - 100                                    U.C. =    500  +   60*60/20  =  680      
                    = 
  560 - 500              120 - 100 
 
 
 What about the equation ? 
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          800 - 500 
  b =                       =   3 
         200 - 100 
 
 
          a - 800                 500 - 800             a =  800 + (-200)*(-300)/ (-100) = 200 
                              = 
          0 - 200                 100 - 200     
 

Cost = 200 + 3*(nber of patients) 
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• Descriptive parameters  
 
Data in a sample can be summarized by different central tendency and dispersion parameters. 
Available parameters depend on  variable type. 
 
•   Central tendency parameters for categorical variables (non-binary): there is only 1 
central tendency parameter, called the Mode.   
 
The mode is obtained by comparing the number of data in the different categories. The number 
of data in a given category is called its frequency. The share-out of data in different categories is 
called a frequency distribution. Take the example of  language-impairment. The frequencies of  
different kinds of language impairments are given in Tab.1, together with relative frequencies in 
%. Different graphical representations of category frequencies are possible. Relative frequencies 
of kinds of language impairment are represented in Fig.3 with an apple-pie chart and in Fig.4 
with a bar chart. In general, some categories are more frequent than others. As can be seen,  
phonological impairments are most frequent. By definition, the most frequent category is the 
mode. 
 
 
 
relative f  = f / n  
        
 
                               k 
n = sample size = Σ (fi) 
                            i= 1 
where i represents a numerical index varying from 1 (first class) to k (last class) 
 
 
various impairments 47 13% 
stuttering 58 16% 
hearing impairment 51 14% 
phonological impairment 208 57% 

total 364 100% 
 
Table 1. Frequencies of different kinds of language-impairments (from: Woods, Fletcher & 
Hughes, 19862

                                                 
2 Woods,A., Fletcher,P., and Hughes,A. (1986) Statistics in Language Studies. Cambridge: Univ. 
Press. 
 

; p.9). 
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various 
impairments
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stuttering
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Fig.3 Apple pie chart 
Relative frequencies of different kinds of language impairments in a sample of 364 male 

subjects with language impairments (Woods, Fletcher & Hughes, 1986; p.9). 
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Fig.4 Bar chart  

Relative frequencies of different kinds of language impairments in a sample of 364 male 

subjects with language impairments (Woods, Fletcher & Hughes, 1986; p.9). 
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•   Central tendency parameters for ordinal variables: Mode and Median. 

For ordinal variables, the mode can also be used for obtaining the central tendency. But there is 
another possible parameter based on rank-order. The median is value such that 50 % of the 
(other) values in the sample are lower and 50 % are higher. 

The median is part of a family of parameters called percentiles.  

PERCENTILE 50 = value corresponding to 50% of the cumulative frequencies (rank n/2). 

Percentile 50 is slightly different from the median (rank n/2). For large samples, percentile 50 = 

median. 

PERCENTILE 25 = is the value which leaves 25% of the observations in the sample below. 

PERCENTILE 75 leaves 75% of the sample below etc...  

Percentiles 25, 50 and 75 are also called respectively first, second and third quartiles. 
 
The median and other percentiles are not easily seen in a histogram but are straightforward in a 
polygon of cumulative frequencies  (see Fig.6) which relates the upper limit of each class and 
the sum of the frequencies of the preceding classes. 
 
                                                         
• Exact formula (for small samples):   
 
 
  median = percentile 50 = value with rank order = (n + 1) / 2 
                               
 
 
• Approximate formula for percentiles (large samples). 
 
P50  =  rank order just below P50  + 
 
 
                             50 % - cum.fr.(%) rank order just below P50       
       
               cum.fr. (%) rank order just above P50  - cum.fr. (%) rank order just below P50 
 
 
 
 
 
 
Example with a small sample: recovery on a 1 to 7 scale in a sample of 5 patients is 5,2 7, 1, 6 
value rank order 
1 1 
2 2 
5 3  
6 4 
7 5 
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Median is 5 
------------------------------------------------------------------------------------------------------------------  

Example: frequencies of family income in 13 categories (by courtesy of Prof. Lagasse) 
                                      Valid     Cum    
 Value  Frequ. Percent  Percent  Percent  
                                               
     1          2         ,3         ,3         ,3   
     2          4         ,5         ,6         ,9   
     3          5         ,7         ,7       1,6   
     4        10       1,3       1,4       3,0   
     5        37       4,9       5,4       8,4   
     6        59       7,9       8,6      17,0                      P25 = 6 +  (25-17.0)/(30.6-17.0) = 6.59 
     7        94     12,5     13,6      30,6   
     8       108    14,4     15,7      46,2                       P50 = 8 + (50-46.2)/(67.0-46.2) = 8.18 
     9       143    19,1     20,7      67,0                       P75 = 9+  (75-67.0)/(83.5-67.0) = 9.48 
    10      114    15,2     16,5      83,5   
    11        71      9,5     10,3      93,8   
    12        33      4,4       4,8      98,6   
    13        10      1,3       1,4    100,0   
     ,          60      8,0   Missing 
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•   Central tendency parameters for quantitative variables: Mode, Median and Mean. 

 

Besides mode and median, there is one more central tendency parameter available for 
quantitative data.  
This parameter is the usual arithmetic mean, i.e. the sum of the values of the sample divided by 
the size (symbol n) of the sample. The mean is a meaningful parameter with quantitative data 
because the 4 arithmetic operations make sense, which is not the case with merely ordinal data. 
However, the median still has an interest for metric data because it is not affected by deviant 
(extreme) values. On the contrary the mean is affected by deviant values, especially in small 
samples. 

                                  n         

MEAN =   m  =    (   Σ  xi ) /n   
                                 i=1 
n = sample size; i represents a numerical index varying from 1 (first data) to n (last data) 
 
The histogram is the most usual graphical representation for quantitative data. The histogram is 
obtained by first grouping data into classes (see procedure below). The frequency of each class is 
then represented as a function of its central value (see Fig.5). When data are grouped into classes, 
the approximate value of the mean can be computed as follows.  
 
 
 
               k         
m  =    (  Σ fc  xc ) /n            
              c=1 
xc = central value of class; fc=frequency of class; k= number of classes 
 
The mode is easy to see in a histogram.  For data grouped into classes the mode is the central 
value of the class with the highest frequency. The interest of the mode is that it gives indications 
on the homogeneity of the sample. The presence of 2 or several modes, or at least of 2 or several 
local modes (peaks in the distribution separated by valleys), indicates that several kinds of data 
have been mixed. 
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Example: rate of insulin in the umbilical vein for 30 subjects. 
Data (in units per cm3) 
 
 
subject index units per cc 
1 37 
2 39 
3 40 
4 40 
5 40 
6 28 
7 37 
8 42 
9 27 
10 29 
11 58 
12 36 
13 42 
14 30 
15 21 
16 36 
17 34 
18 53 
19 84 
20 38 
21 43 
22 40 
23 66 
24 36 
25 50 
26 23 
27 56 
28 47 
29 76 
30 36 
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BUILDING AN HISTOGRAM & A CUMULATIVE FREQUENCY POLYGON 
 
A simpler picture of the data can be obtained by grouping the data into classes. The following 
strategy can be used in this purpose: 
 
 1) calculate the RANGE of values (maximum -minimum = 84 - 21 = 63). 
  
 2) choose the NUMBER OF CLASSES. Guideline values are between 10 and 20.(Take 
10 with the small sample used here).  
 
 3) define the WIDTH of the class by taking a number just above the following ratio: 
    RANGE / NUMBER OF CLASSES 
(In the example: 63/ 10 = 6.3; take 7 as class width).  
 
 4) define the LIMITS of the classes in such a way as each observation falls into one and 
only one class. Simplest strategy is to put the limits of the classes between possible values. The 
CENTRAL VALUE of the class is midway between the limits (e.g. for the lowest class (20.5 + 
27.5)/2= 24). 
 
(example: the lower limit of the lowest class is 20.5 which is just below the lowest value of the 
sample and next limits are 27.5, 34.5 etc...)  
 
 5) count the number of data (frequency) per class. 
 
 6) The HISTOGRAM is obtained with the classes indicated on the abscissa (by their 

central values-as in Fig.5  or by their limits) and their frequencies on the ordinate (by bars). 

Relative frequencies (in %) can also be used. 
 7) With the exact formula, the mean = 42,13 units per cc 
The mean calculated with the approximate formula for data grouped into classes is:  
m ≅ (3*24 + 4*31 +....1*87)/30= 42.67 units per cc 
 
 8) Fig.5 shows that insulin rate distribution is homogeneous because there is only a single 
mode located at 38 units per cc. 
 9) the POLYGON OF CUMULATED FREQUENCIES shown in  Fig.6 is easily obtained 
from the histogram data. 
 10) the PERCENTILES calculated with the approximate formula for data in classes are: 

 
percentile 25 =  34.5 +  7*(25 - 23.33)/(63.33 - 23.33) =  34.79 
 
percentile 50 =  34.5 +  7*(50 - 23.33)/(63.33 - 23.33) =  39.17 
 
percentile 75 =  41.5 + 7*(75 - 63.33)/(76.67 - 63.33) = 47.62 
 

 

 

 
class frequency frequency class cumulativ cumulativ
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central 
value 

in percent upper 
limit 

e 
frequency 

e 
frequency 
in 
percent 

24,00 3,00 10,00 27,50 3,00 10,00 
31,00 4,00 13,33 34,50 7,00 23,33 
38,00 12,00 40,00 41,50 19,00 63,33 
45,00 4,00 13,33 48,50 23,00 76,67 
52,00 2,00  6,67 55,50 25,00 83,33 
59,00 2,00  6,67 62,50 27,00 90,00 
66,00 1,00  3,00 69,50 28,00 93,33 
73,00 1,00  3,00 76,50 29,00 96,67 
80,00 ,00  0,00 83,50 29,00 96,67 
87,00 1,00  3,00 90,50 30,00 100,00 
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Fig.5 Histogram of insulin rate 
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Fig.6 Polygon of cumulative frequencies for insulin rate 
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•   Dispersion parameters for quantitative variables: Variance, Standard-deviation (SD), 
Skewness coefficients. 
 

Dispersion is matter of degree and kind of variability. 

The variance (Symbol s²) is the sum of the squared differences between each value in the 

sample and the mean, divided by the number of degrees of freedom (DF). DF of variance in the 

sample is n  (sample size). We will see later (Chapter 3) that DF for estimating variance in the 

population is equal to n-1. 

The standard-deviation (or SD; Symbol s) is the square root of the variance. This gives a 

parameter measured in the same units as m. The coefficient of variation  provides a index of 

dispersion which does not depend on the units of measurement.  

Variance and SD are parameters of dispersion around the mean. To understand the variance and 

SD formulas it must be stressed that we cannot simply add the differences between sample 

values and their mean because the sum is always null. There are several ways to escape this 

problem. One solution is to take the mean of the absolute differences to obtain what we call the 

"mean deviation". This parameter is however seldom used because absolute values are not easily 

processed in the mathematical framework. The alternative consists in squaring the differences. 

The skewness refers to the degree of asymmetry of the distribution. The distribution is 

symmetrical when there is the same number of data below and above the mean, i.e. when mean 

and median coincide. When the mean is lower than the median, the distribution is "skewed" to 

the left. When the mean is larger than the median, the distribution is generally (but not always) 

skewed to the right. Fisher skewness coefficient (g1) is negative in case of left asymmetry, null 

in case of symmetry and positive in case of right asymmetry. 
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         n        

Variance = s2   = (  Σ (xi- m)2 )/n         
                                    i=1   

 

       ________________ 
            n        

Standard-deviation (SD) = s   =      √ (  Σ (xi- m)2 )/n          
                                                                       i=1 
 

 

                                                ________________ 
                          k     

Standard-deviation (SD) = s   ≅     √ (  Σ fc (xc- m)2 )/n 
                                                       c=1 
          
xc = central value of class; fc=frequency of class; k= number of classes 
 

Coefficient of variation = s/m     
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Examples of variance, SD and coefficient of variation. 

 for the following sample of weights in kg: 6, 9, 10, 12, 15 

m=10.4 kg 

variance = S(xi-m)² /n =  (19.36 + 1.96 + 0.16 + 2.56 + 21.16) / 5= 9.04 kg² 

            ________           ____ 

SD = √S(xi-m)² /n  =  √9.04 = 3.01 kg 

Notice that S(xi-m)/ n  = (-4.4 -1.4 -0.4 +1.6 +4.6) / 5= 0 

S(xi-m)/ n    = always 0 
--------------------------------------------------------------------- 
Comparison between samples with different variances. 
 
Take the two following samples of age measurements: 
 
        first sample: 5, 7, 8, 10, 12, 14, 15 
 
        second sample: 1, 4, 7, 10, 14, 18, 20 
 
For the first sample: m=10.14 years and s2=11.84 years squared  
 
For the second sample: m=10.57 years and s2=43.39 years squared 
 
--------------------------------------------------------------------- 
Comparison between SD and coefficient of variation: 
 
              if 3108, 3245, 3302, 3104, 4002 are weights in grams 
                 
                  m= 3352.2    s= 333.91   s/m ≅ .10 
 
              if the same weights are measured in kg: 3.108, 3.245, 3.302, 3.104, 4.002 
                  m= 3.352   s= 0.334  s/m ≅ .10 
--------------------------------------------------------------------- 
SD for data in classes. 

example: albumin data (see above) 

 
With the exact formula, SD = 14,38 units per cc 
The SD calculated with the approximate formula for data grouped into classes is:  

           ______________________________________________ 

SD ≅ √ (3*(24-42,67)² + 4*(31-42,67)² +....1*(87-42,67) ²)/30 = 14.15 units per cc 
--------------------------------------------------------------------- 
 
Example of skewed distribution  
The distribution of insulin rate (in Fig.5) is skewed to the right, as it often happens for 

physiological or psychological variables. Accordingly, Fisher skewness coefficient is positive 

(g1= 1.946). Right asymmetry can be removed by taking the logarithm of the variable. 
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• Boxplot graph: values inside the box are between P25 and P75 (50% of the distribution); small 
horizontal bars are the largest and smallest values which are not outliers; O points are values 
more than 1.5 boxlength below P25 or above P75; * points are values more than 3 boxlength 
below P25 or above P75. 
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•   Central tendency and dispersion parameters for binary variables: Proportions. 
The proportion of cases in one category (p) also gives the other (1-p). A proportion is equivalent 

to a mean value provided that the value 1 is assigned to one category and 0 to the other. The 

variance also has a meaning and is equal to p*(1-p). 

 

 

                    m =(n1*1 + n0*0 ) / n  = n1 / n = p 
n1 = number of values in category 1; n0 = number of values in category 0 
n = n1 + n0 

 

 

 
  s2 =  (n0(0-p)2 + n1(1-p)2) /n    =    p*(1-p) 
 

 
 
 
Examples: in a sample of 100 subjects, the variance of p is 
 
  p      variance   SD 
 
 .5    .25   .5 
 .1    .09   .3 
 .9    .09   .3 
 
The variance is the highest for .5 and gets lower when the proportion gets closer to 0 or to 1. This 
makes sense. Sample heterogeneity is maximal when the two characters occur with the same 
frequency (50 %). 
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Chapter 3. Probability 
 

 

•   Probability 
• Normal distribution 
•   Poisson distribution 
•   Binomial distribution  
•  Categorization and ROC curves 

Probability is the limite value of relative frequency in an ideal-infinite 
sample called the population. Frequency distributions are obtained with 
data, probability distributions are given by laws (formulas). For continuous 
variables, probability distribution follows the Normal law. For discrete 
probability distribution follows the Poisson law, or  Normal law (expected 
frequency ≥5). For binary variables, probability distribution follows the 
Binomial law or the Normal law (for expected frequencies ≥5). 
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•  Probability 

 

• Empirical definition (Bernoulli, Kolmogorov). The probability (P) of an event is the limit 

value reached by its relative frequency when the size of the sample tends to the infinite. The 

exact probability cannot be given because the relative frequency of an infinite sample is not 

available. The relative frequency however allows to approximate the probability. And, the 

larger the sample, the better the approximation. The problem raised by this definition of 

probability is that the precision of the estimate cannot be specified without refering to the 

notion of probability: there is a danger of circularity in the empirical definition of probability. 
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Fig.3.1 Empirical Probability - Rate of females at birth as a function of sample size in a finite 

population of 1100 babies.  
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• Subjective definition (Bayes), a probability  is the quantification of the subjective "degree of 

belief" that a proposition is true. This definition allows to start from an initial prior 

probability  which can thereafter be improved by empirical observations. Prior probability 

can be based on a theory, or a model. 
 
Example of  empirical probability: a screening test reveals that the number of patients affected by 
tuberculosis amounts 2700 in a sample of 105000 inhabitants, taken at random in a given district. 
The relative frequency is of 2700/105000= 2.57 %. This can be taken as an estimation of the 
probability of tuberculosis in the district. The precision of the estimate is provided by sampling 
theory (see below), which is also based on the notion of probability. 
 
• Probability rules: 
 
 
 
Limits 
  0 ≤ P(e) ≤ 1 
 

Addition rule 
 

    P(e1 OR e2) = P(e1) + P(e2) - P(e1 AND e2) 
 
Events are exclusive when they cannot occur together, then: P(e1 AND e2) = 0. 
 
 
Multiplication rule 
 
   P(e1 AND e2) = P(e1)* P(e2 / e1) = P(e2)* P(e1 / e2) 
 
where P (e2 / e1) is a conditional probability, namely the probability that e2 
occurs when e1 is present. 
 
Events are independent if probability of one event does not depend on the 
presence vs. absence of the other, then:  
 

P(e2 / e1 present ) = P(e2 / e1 absent) = P(e2 ) 
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Example of addition with exclusive events: different types of cells 
 
 
 
                       P (grey or rectangle) = P(grey) + P(rectangle) -  
                                                                                                              P (grey and rectangle)  
 

= 0.2 + 0.5 - 0 = 0.7 
 
 
 
------------------------------------------------------------------------------------------------------------------ 
Example of addition with non-exclusive events:  
 
 
 
                                                     P (grey or rectangle) = P(grey) + P(rectangle) -  
          P (grey and rectangle)  
 

= 0.3 + 0.5 - 0.1 = 0.7 
 
 
 
 
 
 
 
 
Example of multiplication with non-independent (related) events: 
 
     P (grey and rectangle) = P(grey)*p(rectangle/grey) =  
 
      =  (3/10)*(1/3) = 1/10 
 
     P (grey and rectangle) = P(rectangle)*p(grey/rectangle) =  
 
      =  (1/2)*(1/5 )= 1/10 
------------------------------------------------------------------------------------------------------------------ 
 
Example of multiplication with independent (non-related) events: 
 
     P (grey and rectangle) = P(grey)*p(rectangle) =  
 
      =  0.25*(1/3) = 1/12 
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Examples of addition exclusive events: membership of a bloodgroup for the same individual 
because  the belonging to a bloodgroup excludes the one to another bloodgroup. 
  
if P(belonging to gr.O)= .40 and P(belonging to gr.A)=.15 
 
then P(belonging to O or A)= .40 + .15 = .55 
----------------------------------------------------------------- 
Examples of addition of non-exclusive events: toxic reactions in repeated administrations of a 
drug because the development of a toxic reaction after the first administration does not prevent a 
second one (adapted from Colton p.70). 
 
Suppose the P(toxic reaction)=.1 and that the probability of developping 2 successive toxic 
reactions equals .06, then 
P(toxic reaction either at first or at second administration) = 
.1 +.1 -.06 = .14 
----------------------------------------------------------------- 
Examples of multiplication of independent events: if the probability of toxic reaction remains 
constant for repeated administration then P (2 successive toxic reactions ) = .1*.1 = .01 
----------------------------------------------------------------- 
Examples of multiplication of non-independent events: if probability of a second toxic reaction, 
given a previous one is larger, say .6 instead of .1, then P (2 successive toxic reactions ) = .1*.6 
= .06 
----------------------------------------------------------------- 
Example of in dependent vs. dependent events in a 2 by 2 table. Consider a finite population of 
950 subjects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 D+ D-  
T+  30   50   80 
T-  20 850 870 
  50 900 950 
 
D and T are dependent as shown by unequal conditional probabilities either  
in columns or in lines: 
 
P (T+ /D+) > P (T+/D-)  
 
P  (D+ /T+) >P (D+/T-)  
---------------------------------------------------------------------------------------------- 
 D+ D-  
T+   5   90   95 
T- 45 810 855 
 50 900 950 
 
D and T are independent because conditional probabilities are equal 
P(D+ and T+) = P(D+)*P(T+) 
Just the same: cell frequency (D+ and T+) =  line total * column total/ grand total 
Example: 95*50/950 = 5 
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• Bayes’ Theorem: 

 

P( T+ and D+)  = P(T+/D+)*P(D+) = P(D+/T+)*P(T+) 

 

 P(T+/D+) = P(D+/T+)*P(T+)/ P(D+) 

 

We see that the probability to test positive when diseased is not the same as the probability to be 

diseased when testing positive. It is only when the probability of testing positively is equal to the 

prevalence that the two conditional probabilities are equal. Otherwise probability to test positive 

when diseased is larger than the probability to be diseased when testing positive if the probability 

of testing positively is larger than the prevalence. And the converse is true when the probability 

of testing positively is smaller than the prevalence. 

 

Similarly: 

 

P(T-/D-) = P(D-/T-)*P(T-)/ P(D-) 
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• Normal distribution 

 

Most natural frequency distributions are bell-shaped. Central values are much more frequent than 

extreme values and there is a gradual frequency decrease from central to extreme values (see 

insulin disrtibution, Fig.5). The typical bell-shaped is symmetrical. Natural distributions are not 

always symmetrical but can be made symmetrical with appropriate variable transformations 

(such as log-transforms). Ideal bell-shaped distributions are given by the Normal probability 

formula. A frequency distribution is empirical by nature and is never perfectly Normal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Why is the Normal distribution so common? Because the sum of a large number of variables 

follows a Normal distribution whatever the distributions of the variables, provided that the 

variables are independent. 

Normal formula 
 

                                      1                 -z²/2 
  P(z) =                   e 
                            √2π 
 
 
      where           x is a continuous variable 
 
                               x - µ 
                    z =                   =   “Normal deviate” 
                                        σ 
      
 
                           µ = mean 
 
                           σ = SD        
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The central-limit theorem says this in more precise terms: 

 

        Each sum of n independent random variables X1,X2, X3, ....,Xn is an asymptotic Normal 

variable. 

 

Asymptotic means that the distribution gets closer and closer to the Normal as sample size (n) 

gets larger and larger. Besides the independence requirement, the only other restriction to this 

theorem is that the variables must be of the same order of magnitude. Otherwise, if the numerical 

values taken by one of the variables are much larger than those taken by the others, its 

distribution will dominate the sum.   

 

   
 
Example: comparison between two games with dice. 
First game: with a single dice, each player chooses a figure from 1 to 6 and wins if the dice falls 
on the figure. In this game the 6 possible events are equiprobable, provided the dice is fair, and 
the probability distribution is rectangular (Fig.13). 
Second game: with 2 dices, each player chooses a number corresponding to the sum of 2 figures 
between 1 and 6, that is a number between 2 and 12. 
Which number would you choose ? 
Choose the 7 because the outcomes are no more equiprobable and 7 is the most frequent 
combination (Fig.). The distribution has lost its rectangular look for a triangular shape. Further, 
the distribution becomes unimodal and symmetrical (the most frequent value corresponds to the 
mean (7)). These are also the two main features of the Normal distribution. However, the 
triangular distribution is still far away from the Normal one, which is bell shaped and provides a 
probability for each of the values taken by a continuous variable from minus infinite to plus 
infinite. For 3 independent variables, the distribution of the sum is already bell shaped, and for 5 
it is almost indistinguishable by eye from the Normal. 
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Fig.3.2 Illustration of the Central-Limit theorem : comparison  between two games with dice. 
First game: 1 dice, the 6 possible figures are equiprobable. 
 
    DICE A    
  I II III IV V VI 
 I 2 3 4 5 6 7 
 II 3 4 5 6 7 8 
DICE B III 4 5 6 7 8 9 
 IV 5 6 7 8 9 10 
 V 6 7 8 9 10 11 
 VI 7 8 9 10 11 12 
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Fig.3.3 Illustration of the Central-Limit theorem : comparison  between two games with dice. 
Second game: 2 dices, there are 6*6 = 36 possible  issues corresponding to the sum of the 2 
dices. The table  below gives the SUM of the 2 dices for each possibe  combination. As can be 
seen, the middle-range values are more  frequent than the extreme values. The distribution is no 
more  rectangular but triangular (as shown on the graph). With 3,  4, 5, ... dices, the distribution 
becomes progressively bell- shaped.  
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 Fig.3.3.1. An example showing how the distribution gets closer to Normal as the size of the 

sample increases (From Colton, Fig.44; see Ref. in Chapter1).
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A large sum of random variables has a probabilty distribution close to the Normal one (see 

Fig.10). The Normal distribution is unimodal and symmetrical. As the Normal distribution is for 

a continuous variable, the sum of the probabilities between any two values is a probability area, 

which is represented on the graph by the area below the curve and between the two values. The 

total probability area is equal to 1 (values are exclusive and exhaustive events).  

Remarquable values: 

         Limits                                     Probability Aeras 

   between µ-σ and µ+σ     about 2/3 (67 %) 

   between µ-2σ and µ+2σ      about 95 % 

   between µ-3σ and µ+3σ     about 99.5 % 

 

Any Normal distribution is completely specified by 2 parameters (µ and σ) and can be 

transformed into the standard Normal distribution of mean=0 and SD=1.  

 

z = (x-µ)/σ 
 

If x is distributed N(µ,σ) then z is distributed N(0,1). The normal-deviate z gives the distance 

between the mean and any point of the distribution in standard deviation units. Example: if the 

weight is N( 3000g, 500g), a weight of 4000g corresponds to z=2 which indicates that it is 2 SD 

above the mean; a weight of 2250g corresponds to z=-1.5 which indicates that it is 1.5 SD below 

the mean, etc... A condensed table of Normal probability values in given below (for a full table 

see  Kirkwood pp.206-207). It gives the probability area above z, for z values regularly spaced 

between 0 and +3. As the Normal distribution is symmetrical, the probability area below -z is 

equal to the one above +z.  

Examples: 

    above z=1       probability area =.1587 

    below z=-1     p=.1587 

    above z=1.96   p=.025 

    below z=1.64   p= 1-.0505= .9495 

    above z=-1.64  p= 1-.0505= .9495 
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Fig.3.4 Normal Probability Curve and Table (condensed) 
 

z p 
0.0 0.5 
0.84 0.2 
1.0 0.16 
1.64 0.05 
1.96 0.025 
2.33 0.01 
2.58 0.005 
3.09 0.001 
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•  Poisson distribution (for discrete variables) 
 
Poisson distribution applies to variables such as: 
 
          - the number of childbirth per day in a hospital 
          - the number of accidents per year at a crossroads 
          - the number of trypanosomes per blood sample 
          - the number of bacteries per volume of water. 
 
Each of these variables is a number of events as a function of an extraneous factor such as time, 
space, volume, etc... The occurence of an event is distributed according the Poisson law if the 
probability rate of occurence is constant (over time, space; e.g. birthrate constant over days...). 
Constancy can be admitted if the 2 following conditions are fulfilled: 
 
     1) PROPORTIONNALITY: the number of events must be 
proportionnal to the extraneous factor taken as reference (for time: number of events per month = 
number per year/12 etc...). This implies that the number of events should not depend on the piece 
of reference (the moment of observation, portion of space ...). Non proportionnality arises from 
trends, especially for long periods of time (over decades). Cyclic trends, or "seasonal variations", 
can disturb proportionnality in the short run (months in the year with increase in childbirth). 
 
     2) INDEPENDENCE: the events must be independent (one 
delivery must not affect the occurence of another, one accident must not give rise to another). 
This can be admitted provided that the time span is appropriate (a day rather than an hour for 
accidents at a crossroads). 
 
The variance of the Poisson distribution is equal to the mean: σ2 = µ. The Poisson distribution is 
characterized by a right (positive) asymmetry but tends to be symmetrical as the mean increases. 
Further, Poisson distribution is approximatively Normal for mean values equal or larger than 5.  
 

Poisson Formula (for µ>0) 
 

      p(x events) =  µx/(eµ*x!)                        
    
   

       σ2 = µ  
 
 
  where     x = any positive integer 
       e = constant = basis on natural logarithms = about 2.72 
        µ = expected number of events = mean of the distribution 
 
Normal approximation 
  For  µ ≥ 5 :       Poisson      →      Normal  
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Example of Poisson variable: if the expected number of childbirth in a given hospital is 2300 per 
year; then the expected number per day is about 2300/365 = 6.3. Application of Poisson formula 
gives (A graphical representation is provided in Fig.3.5): 
 
                number of childbirth                probability 
     0      .0018 
     1      .0115 
     2      .0363 
     3      .0762 
     4      .1200 
     5      .1513 
     6      .1588 
     7      .1429 
     8      .1126 
     9      .0788 
              10      .0496 
    etc...        .... 
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Fig.3.5 Poisson distribution  
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•  Binomial distribution (for proportions) 
 
Poisson and Binomial law both apply to number of events. However, a Binomial variable 
corresponds to the realisation of some event versus another in a sample of definite size (the size 
of the sample corresponds to the sum of the frequencies of the two events). For a Poisson 
variable, the size of the sample is not specified (the frequency of the alternative event is not 
specified). In fact, the Poisson law applies to events of which the frequency is very small by 
comparison with the alternatives (in the above examples: the number of women who do not 
deliver a given day in a hospital, the number of vehicles who get through the crossroads without 
accident ...). 
Knowing the probability of an event (π) for a single item in a population , what is the probability 
that this event occurs a given number of times (x) in a random sample of n items? This is the 
sampling distribution problem for a proportion. The solution is provided by the Binomial law, or 
Bernouilli law.The Binomial distribution is symmetrical for π = .5, otherwise it is not 
symmetrical. Notice that three different proportion-like values are involved in the Binomial 
formula: π the probability of infections in the population, p the probability of samples with x 
events/n, and  x/n  the proportion of events in a sample. 
 
 

Binomial Formula 
 
   p(x events over n)= Cxn*(π)x*(1- π)n-x   
 
    
 
  Cxn= n!/x!(n-x)!  (combination of n events x by x) 
     
π= prob. of the event in the population = mean of the Binomial 
distribution (µ = π). Variance is σ2 = π*(1-π)/n  
  
p = prob. of x times the event in a sample of size n 
     
x = number of events per sample 
 
Normal approximation for a Binomial distribution:  if n*π and n*(1-π) 
are both equal or larger than 5 
 
                                       Binomial      →      Normal  
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Example: If the probability of infection is .3 for the subjects which undergo a specific operation, 
what is the probability of having 0, 1, 2, 3, 4 infected subjects among the 4 operated each day in a 
hospital? 
 
Partial answers can be obtained by the application of the multiplicative law. If we admit that the 
group of 4 daily operated subjects is a random sample taken from the population of all those who 
undergo the operation, then the individual probabilities of infection are independent and remain 
equal to .3, and : 
 
                       p(all infected) = (.3)4 = .008 
                        
                       p(none infected) = (.7)4 = .24 
 
The multiplicative law does not give the complete solution if we want the probability that some 
part of the group will be infected.  
 
For 1 infection over 4: 
 
p(patient in the first bed infected and the 3 others not) = .3*(.7)3 
 
This probability must be multiplied by 4 because there are 4 patients in the sample and for each 
of them the infection risk amounts 30 %: 
 
                           4*.3*(.7)3 = .41 
 
For 2 infections over 4: 
 
p(patients in the first 2 beds infected) = (.3)2(.7)2 
 
This probability must be multiplied by the number of combinations of 4 elements 2 by 2 : 
 
             C24 = 4!/2!(4-2)! = 6 
 
p(2 infected over 4) = 6*(.3)2(.7)2 = .264 
 
Similarly for 3 infections over 4: 
 
p(3 infected over 4) = C34*(.3)3(.7)1 = .0756 
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Fig.3.6  Binomial law. 
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 •  ROC curves for diagnostic tests 
 
In applied statistics we often consider more than just one probability distribution. For example, 

analysis of diagnostic tests typically requires two different distributions, one for “normal” 

subjects and the other for “diseased” (see Fig. 3.8). As these distributions always exhibit some 

degree of  overlap perfect classification is not possible. We cannot find some criteria (C) such 

that all normal subjects fall on one side and all diseased on the other side. In other words, 

diagnostic tests are always below 100 % specificity and sensitivity, and above 0% false positives 

and false negatives.  
 
 

Notations and terminology 
 

 
 D+ D-   D+ D- 
T+ (P(D/d) or 

 
P(T+/D+) 
 

(P(D/n) or 
 
P(T+/D-) 
 

 T+ sensitivity  false 
positive 

T- (P(N/d) or 
 
P(T-/D+) 
 

P(N/n) or  
 
P(T-/D-) 

 T- false 
negative 

specificity 

 
 

Different tests will differ in performance, the lesser the overlap between the distributions the 

better the performance. But for a given test, with a specific degree of overlap, specificity and 

sensitivity will depend on the location of the criteria. Moving the criteria along the test scale has 

opposite effects on specificity and sensitivity, with one coefficient increasing if the other is 

decreasing (compare Figs. a  & b in 3.8).   
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Figure 3.8. ROC curve 
 
When distributions are Normal with equal variance(as in Fig.3.8), moving the criteria has regular 

effects on sensitivity and specificity. These effects follow what is a called “ Receiver Operating 

Characteristic” curve (ROC curve) in a two-dimensional diagram with sensitivity on the Y axis 
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and  false positive rate (= 1 -specificity) on the X axis. (Fig.3.8, bottom). Any point along this 

curve corresponds to the sensitivity-specificity pattern for a given criteria location.  

 
The diagonal in a ROC diagram corresponds to a test with sensitivity equal to false positives. 

This occurs when distributions of normal and diseased subjects completely overlap. The lesser 

the overlap the larger the distance between the ROC curve and the diagonal. Degree of non-

overlap can also be measured by taking the difference between distribution means divided by 

their SD: 

 

   / md - mn / 
   d’ =   
         s  
 

The d’  is similar to a z value. It gives the distance between means in number of SD (SD units). 

Comparison of ROC curves for different tests allow to rank their performances independently of 

criteria location (see Fig.3.9). 
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Figure 3.9. ROC curves for different tests. 
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The smooth aspect of the ROC curve is only obtained with ideally Normal and equal-variance 

distributions. In practice, ROC curves are less regular as shown by the curve in Fig.3.10., which 

relates sensitivity-specificity for different prediction of disease at birth with a combination of 

different parameters (skull perimeter, delivery mode, mother’s age, mother’s education, nber. 

living children). 
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Fig.3.10. ROC curve for prediction of disease at birth with a combination of different parameters 
(calculated from data in mat7e97.sav file; data by courtesy of  Prof. Hennart PHS-ULB). 
 
 
 
 
 
 
 
 
                                                                      



Willy SERNICLAES - Public Health School ULB 50 
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Chapter 4. Confidence Intervals  
 

•   Sampling Distribution 
• Confidence Interval for a mean 
• Confidence Interval for a count 
•   Confidence Interval for a proportion 

The sampling distribution of the population mean is the distribution of 
sample means in a population of samples. For continuous variables, 
sampling distribution of the mean is given by by Normal formula (variance 
known), or by Student’s t formula (variance unknown). For counts 
sampling distribution is given by Poisson formula, or by Normal formula 
(expected frequency ≥5). For proportions, sampling distribition is given by 
Binomial formula or by Normal formula (for expected frequencies ≥5). 
Sampling distributions are used for calculating confidence intervals. The 
95% confidence interval of a mean is a range of values around the data 
mean in which the population is located with 95% probability. 
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•  Sampling Distribution for Mean 

 

There are several ways of extracting a sample from a population (see Chapter 5 for 

further information). The simplest way to proceed, for the purpose of parameter 

estimation, is to extract elements at random elements (i.e. each element must have the 

same probability to be extracted) and independently of each other (i.e. the probability 

that one element is extracted must not depend on the extraction of another element; 

counterexample: "snowball" sampling technique in toxicology). When these 2 

conditions  are fulfilled, the sample is said to be "random" and "simple". When 

samples are random and simple, each possible sample has the same chance of being 

selected from the population.  

Suppose that we measure the mean values (m) of the random-simple samples of a  

given size (n) extracted from a given population. We can imagine a population of 

sample means and a corresponding sampling distribution.The sampling distribution 

of a mean is Normal even if the distribution of the population of individual items is 

not Normal, provided that sample size (n) is not too small. This is a  consequence of 

the Central-Limit Theorem. Finally, the variance of the sampling distribution of the 

mean is n times smaller than the variance of the  individual items in the population. 

The variance of the mean is n times smaller than the one of individual items. The SD 

of the mean is called the standard error. 

 

 The variance of a sum of n independent variables is equal to the sum of 

their variances 

σ2 of (Σxi) = Σ σi2 = n*σ2 
 
As each variable is extracted from the same population of variance  

σ2 (xi)  =  σ2 
and as 

σ2 (xi/n)  =  σ2/n2 

 
then 

σ2 (Σxi/n) = n*σ2/n2 

 
σ2 of m  = σ2/n 
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Standard Error =  SD ( m )= σ/√n 

 
 
• Confidence interval for a mean 
 
Statistical inference theory can be used for assessing the generality of a parameter 
value. This is called parameter estimation. Parameter estimation leads to the 
specification of a “confidence interval”, which is the statistical equivalent of the 
precision interval in measurement theory (if the precision of weight measurements is 
in grams, then each weight is measured with a precision of ± 0.5 g). However, the 
confidence interval is not a deterministic concept. The true value is not necessarily 
within the interval, it only has some chance to be there. 
 
The mean value in a sample can be considered as an estimate (called a point 
estimate) of the true mean, or population mean. The precision of the estimate is given 
by the limits of the confidence interval. 
 
A confidence interval is an interval as small as possible around the sample mean and 
such that the population mean is contained in it for a given percentage of the samples. 
Thus the 95 % confidence interval contains the true mean for 95 % of the samples; the 
99% confidence interval contains the true mean for 99% of the samples and so on. Let 
us simplify the problem by looking for a symmetric interval around  m. Then, all we 
have to find to specify is a single value, let us call  it c, such that: 
 
         m-c < µ < m+c   for 95% of the samples. 
 
As we have: -c < µ-m < +c, the problem is to find an interval centered on 0 which is 
the midpoint between -c and +c... 
                                                  and which contains the difference µ-m for 95% of the 
samples.  
 

Given that µ-m is distributed normally (like m) with zero mean (µ-µ)  and 
σ

n  as 
standard deviation (like m), 

                                            the limits of the interval are equal to - or + 1.96*
σ

n  (see 
Fig.4.1).  
 
Indeed the limits would be - or + 1.96 for the standard Normal distribution because 
the probability of having a value either above 1.96 or below -1.96 is .05 (see Normal 
table in Chapter 9) and hence the probability of having a value between -1.96 and 1.96 
is 95%. Given that m-µ is also distributed normally with zero mean but with a SD =  
σ

n , these values must be multiplied by 
σ

n  in order to  obtain the corresponding 
limits. 
 
Conclusion: 
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           the values m ± 1.96*
σ

n  are the 95% confidence limits for the population 
mean µ, that is µ is contained within these limits for 95% of the samples. 
 
In the same way: 

               the 99% confidence limits are m ± 2.58*
σ

n ,  where 2.58 corresponds to 
p=.01 in the bilateral table (A2). 
 
 
 
 

 
 
Fig.4.1 Confidence interval 
 
 
 
example: from Colton p. 127/ survival time for drug-treated cancer  patients. 
              m = 46.9 months 
               n = 100 subjects 
             σ = 43.3 months 
 
the 95% confidence limits are:     46.9 ± 1.96*43.3/ 100 = 
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                                   46.9 ± 8.5 = (38.4 ; 55.4) 
the 99% confidence limits are:     46.9 ± 2.58*43.3/ 100 = 
                                   46.9 ± 11.17 = (35.7 ; 58.1) 
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• Confidence interval for a mean with Student’s t distribution 
 

What to do when the population SD (σ) is unknown ? 
 
When the SD of the population is not known, the SD of the sampling distribution of 
the mean is not known exactly but can be estimated from the SD measured in the 
sample. 
 
DF for estimating variance in the population is equal to n-1.  Why n minus 1? Clearly 
if there is only 1 observation, there is no information about dispersion around the 
mean in the population. The number of degrees of freedom (DF) is zero. With n=2, 
there is 1 possible source of variability and df=2-1=1, etc...Thus: df=n-1. 
 

                                                   n        

estimation of population Variance = s2   =   (  Σ (xi- m)2 )/(n-1)          
                                                                                       i=1   

   
 
 

  estimation of standard error =   s /√n 
 
In these conditions, m-µ/s/√n is not distributed normally because not only m but also 
s/√n fluctuates from sample to sample. The distribution is somewhat different from 
the Normal and is called the Student’s t distribution. The t distribution depends on 
the number of degrees of freedom (df) of s, which are equal to the size of the sample 
minus 1 (n-1). The mean of any t distribution is 0 and its SD=1+(2/df-2) for df>2, 
which indicates that the SD becomes closer and closer to 1 as the df get larger. Table 
A3 in Kirkwood gives the t values for different probabilities and different dfs. The 
structure of the table is different to that of the Normal table: the  values taken by the 
random variable (the t values) are inside the table, and not outside, on the periphery. 
Each line corresponds to a degree of freedom and each column to a probability. Notice 
that the table A3 provides both the unilateral and bilateral probabilities: the lower row 
gives the probability area in 2 tails, i.e. the one above the corresponding t value and 
the other below -t, whereas the first row of the table only gives the area in the tail 
above the t value. The t distribution is symmetrical, just like the z distribution. This 
makes that if we take the probability of having a value larger than a given t value in 
the table (e.g. for df=30 and t=2.042, P=.025 as indicated by "One sided P value"), 
this probability taken  twice is the probability of having a t value larger than the  
tabulated value or lower than minus the tabulated value ( in  our example P=.050 as 
indicated in " Two sided P value ").Finally we see that the t values approach the z 
values  when the df gets larger. With 30 df the first digit is generally identical. For 120 
df the 2 first digits are generally identical. The values in the last row, with an infinite 
number of df, are the same as the z values. 
The t table is used for the specification of the confidence interval when σ is unknown. 
The 95% confidence limits are:  
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         m ± tn-1*s/√n 
 
where tn-1 is the value in the Student's t table  corresponding to n-1 df and to a 
bilateral P=.05. 
 
example:mean CBF (Cerebral Blood Flow) is 98.44 with a SD of 3.066 in  a sample 
of 13 subjects without cognitive neglect. 
 
 
95% confidence limits are:     98.44 ± 2.179 *3.066/√13= 
                                   98.44  ±  1.853 = (96.59 ; 100.29) 
99% confidence limits are:     98.44 ± 3.055*3.066/√13= 
                                   98.44  ±  2.598 = (  95.84 ; 101.04) 
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• Confidence interval for a count 
 
 

  If E ≥ 5 Poisson      →      Normal  
 
                  95% Confidence Interval:  m ± 1.96 * √m/n 
 
Example of Poisson variable: if the expected number of childbirth in a given hospital is 
2300 per year; then the expected number per day is about 2300/365 = 6.3. Application of 
Poisson formula gives (A graphical representation is provided in Fig.12):: 
 
                number of childbirth                probability 
     0      .0018 
     1      .0115 
     2      .0363 
     3      .0762 
     4      .1200 
     5      .1513 
     6      .1588 
     7      .1429 
     8      .1126 
     9      .0788 
              10      .0496 
    etc...        .... 
 
95% Confidence interval for year count 
 
2300  ± 1.96 * √2300/1  
Limits are (2206; 2394)  
precision is ± 94 childbirth a year 
relative precision is 94/2300 = 4.1% 
 
95% Confidence interval for day count 
 
 
6.3 ± 1.96 * √6.3/365 
Limits are (6.04; 6.56) 
precision is ± 0.26 childbirth a day 
relative precision is 0.26/6.3 = 4.1% 
 
Absolute precision is better for day vs. year, but relative precision is constant.  
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• Confidence interval for a proportion  
 
 
 
Normal approximation for a Binomial distribution 
 
if n*p and n*(1-p) are both equal or larger than 5 
 
Binomial      →      Normal  
                                                                     ________ 
95% Confidence Interval:       p ± 1.96 * √p*(1-p)/n 
 
Confidence interval for a proportion: example in which Normal approximation is 
possible. 
 
(from E. Truy, Vth Int. Cochlear Implant Conf., New York 1996; p.21): Oblitaration 
of the cochlea was investigated with high resolution computer tomography (HRCT) in 
a sample of 101 candidates for cochlear implantation. Result showed partial or total 
oblitaration of cochlea in 14 cases.  
 
p = 14/101 = 13.86 % 
np= 14; n(1-p) = 101-14 = 87 
np and n(1-p) are both larger than 5, Normal approximation is possible. 
 
the 95% Confidence Interval is: 13.86 ± 1.96* √13.86*86.14/101  =  
        13.86 ±  6.74  
Confidence Limits are: 7.12 ; 20.59 
There is a 95% probabbility that  the proportion of cochlea oblitaration in the 
population of implantee candidates is in the 7 to 21% interval.  
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Poisson 
Normal 

Student’s t 
Normal 
 

Binomial 
Normal 

count 

binary 
contrasts beween 
categories 

categorical 

95% Confidence Interval:   
 
continuous variable:              m ± t (.95) * √s²/n 

 
 
count  (if  E ≥ 5):    m ± z (.95) * √m/n 

 
proportion (if  E ≥ 5):              p ± z (.95) * √p*(1-p)/n 
 
 

continuous 
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Chapter 5. Conformity tests for a single sample  

• Null hypothesis, Significance test  
• False positives and Confidence 
• t-test for a mean 
•  False negatives and Power 
• chi-square test for a count 
• chi-square test for a proportion 
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• Null Hypothesis and False positives (Type I Error) 
 
Purpose of  statistical tests: What do sample measurements of contrasts, 
R and OR coefficients tell us about population values ?  
 
The Null Hypothesis (H0) says that the contrast is null in the population 
(that the difference between the sample value and zero is only due to 
chance).  
 
The Null hypothesis is rejected if: 
 
 -   the 95% Confidence Interval does not contain the H0 value 
 
 -  or just the same:  the P value is lesser than 5%  (.05). 
 
When the H0 is rejected we say that the test is significant and we give the 
P value (S at p = .0...). 
 
When the H0 is not rejected we say that the test is non-significant and we 
also give the P value (NS at p = .0...). The P value is the chance that the 
difference between m and H0 value is due to random variation between 
samples. 
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Figure 6.1 False positives (Type I error) 
• t-test for a mean 
 
 
Example: conformity of mean weight at birth with a population value. 
 
Suppose that previous studies suggest that the mean weight at birth should be 3100 g. 
Is this compatible with the obtained mean of 3251 g in a sample of 41 babies,, where 
SD = 525 ? 
 
In other words: 
 
       Is our sample extracted from the same population as before ? 
       Is there a change in mean weight at birth ? 
       Is the null hypothesis of 3100 g true ? 
 
These questions lead to the following one in statistical terms: 
 
               What is the risk we take if we state that the difference between the sample 
mean and the our hypothesis on the population mean is NOT due to random 
fluctuations ? 
 
Answer: if the true mean is really 3100, the risk is equal to the probability of obtaining 
a difference at least as large as 3251-3100= 151. 
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Calculation: given that population SD is unknown, the sampling distribution of m is  
Student's t with 40 df and 
                               p(difference>151) = 
                                    
                                        151 
                               p(t40>--------  ) = 
                                        525/√41 
 
                               p(t40>1.84) 
 
The table indicates that the probability is between .10 and .05, thus: 
                     p > .05, the risk we take in concluding to a difference is higher than 5%. 
There is more than 5 % chance that the difference between the mean weight at birth 
and the population value is due to random variation (sampling variation). 
 

The issue of the test is not simply "no, the null hypothesis is not true" or "yes, the 

hypothesis is true"... 

                                            but between  "reject the null hypothesis with a given risk" 

or " the hypothesis is compatible with a given risk".  

 

How to conclude then ? BY CONVENTION, we decide NOT TO REJECT the 

population hypothesis if the risk is larger than 5%. We then say that the test is NON 

SIGNIFICANT (NS, p > .05). 

Convesely, if the risk is lesser than (or equal to) 5% we decide to REJECT the 

population hypothesis. The test is SIGNIFICANT  (S, p ≤ .05). 

 

The risk to reject the H0 when in fact it is true is called "TYPE I ERROR" or α or P : 

   α = p(RH0/H0 true).  

This risk is equivalent to the  FALSE POSITIVE in diagnostic tests. However, 

whereas false positive probability in diagnostic test is the risk of deciding that a single 

subject is different from some norm when in fact he is not, type I error is the risk of 

deciding that the mean of a sample of subjects is different from some norm when in 

fact it is not. 

 

• False negatives (Type II error) and Power 
 
Type I error is the risk to reject a true hypothesis. This is the risk we take when the test 

is significant. But we also take a risk when the test is non significant. This is TYPE II 
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ERROR (or β) and it is defined as the probability of not. rejecting the H0 when in fact 

it is false: 
   β = p(NRH0/H0 false). 

 

This risk is equivalent to the a FALSE NEGATIVE in diagnosis tests.  Again, whereas 

false negative probability in diagnostic test is the risk of deciding that a single subject 

is not different from some norm when in fact he is, type II error is the risk of deciding 

that the mean of a sample of subjects is not different from some norm when in fact it 

is. 

 

An alternative hypothesis, labelled H1,  must be specified for calculating the Type II 

error. The difference between H0 and H1 corresponds to the precision of the test. The 

higher the precision,  the higher the Type II error. 

There is a straightforward relationship between the significance test and the 

confidence interval. Confidence is the probability of not rejecting the H0 when it is 

true with a given precision. 

A 95% C.I. contains all the H0 values which would not be rejected at p=5%. This 

means for instance that a OR is not significant if its C.I. contains the value 1. A 99% 

C.I. contains all the H0 values which would not be rejected at p=1%. Etc...The 

confidence level (1-α) is the complement of the rejection level (α). 

The Power of a test (1-β) is the complement of the type II error (β). Power is the 

probability of rejecting the H0 when it is false with a given precision. 

 

  
                   H0 is true               H0 is false 
rejection of H0 
(significant test) 
 

type I error 
type I error = α or p 
p = P(RH0 /H0 true) 

right issue 
Power = (1-β)  
Power  = P(RH0 /H0 false) 

non rejection of H0 
(non significant test) 

right issue 
Confidence = (1-α) 
Confidence = P(NRH0 /H0 
true) 

type II error 
type II error = β 
β = P(NRH0 /H0 false) 
= P(NRH0 /H1 true) 

 
 

Example of Type II error calculation . Return to the “cure everybody” drug (Chapter 

1). 
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H0 : π =1 

Data: 100% cured in a sample of 30 

Sampling distribution: Binomial (calculations are simpler than with Normal 

approximation) 

 

Alternative hypothesis  Type II error and Power   

     

 

H1 π =.99  β= P(NRH0 /H1 true) = P(p=100%/π =.99) = .99
30

 ≅  0.74; Power= 0.26 

 

H1 π =.9  β= P(NRH0 /H1 true) = P(p=100%/π =.90) = .90
30

 ≅  0.04; Power= 0.96 
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• Chi-square test for a count 
 
 
The sampling distribution of a count is the Poisson distribution.  Thus we should in 
principle make use of the Poisson distribution for testing an hypothesis on a count. 
However, with the Poisson distribution the procedure is rather tedious, especially for 
large samples. We can therefore use the Normal approximation, as we did for the 
confidence interval, provided that observed frequencies are equal or larger than 5 
(Chapter 4). We can also use a Pearson Chi-square (symbol χ²) test, which will give 
exactly the same results as the Normal test. The interest of the Chi-square is that it 
will be useful for further applications. Chi-square with only 1 DF (as for the present 
application) the same as a Normal variable squared (z²) 
 

Pearson Chi-square for counts 
 
O is the observed count 
 
Null hypothesis (H0):  E  is the population count 

       
Sampling  distribution of                                                   O-E 
                                                                        =   

                                                                                                   √      E 

 

is a Normal z distribution . Remember that mean is the same as variance for a Poisson 

variable. 
 
 
 
 

Sampling  distribution of                                                  (O-E)2 
                                                                        =   

                                                                                                            E 

is a Chi-square distribution with DF=1 
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Example of conformity test for a count in which Chi-square (or Normal) 
approximation is possible. 
 
Is a rate of 6.3 chidbirth a day compatible with the 11 expected in the population ? 
As 11 is larger than 5, Normal or Chi-square approximation can be used. 
 
 
z = (6.3-11)/√11 = -1.42 
 
 
Table shows that test is NS (p = .156). Rate of  childbirth in sample is not 
significantly lesser than in population. 
 
χ² = (6.3-11)²/11 = 2.01 
 
 
Table shows that test is NS (p> .1). Rate of  childbirth in sample is not significantly 
lesser than in population. 
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• Chi-square test for a proportion 
 
The sampling distribution of a proportion is the Binomial distribution.  Thus we 
should in principle make use of the Binomial distribution for testing an hypothesis on 
a proportion. However, with the Binomial distribution the procedure is rather 
tedious, especially for large samples. We can therefore use the Normal 
approximation, as we did for the confidence interval, provided that observed 
frequencies are equal or larger than 5 (Chapter 4). We can also use a Pearson Chi-
square (symbol χ²) test, which will give exactly the same results as the Normal test. 
The interest of the Chi-square is that it will be useful for further applications. 
 

Pearson Chi-square for proportions 
 
p is the expected value is sample of size n; thus np and n(1-p) are the observed absolute 
frequencies Oi 
Null hypothesis (H0):  P0  is the population value; thus nP0 and n(1- P0) are the 
expected absolute frequencies Ei 

       
 
 

Sampling  distribution of                                                  (Oi-Ei)
2 

                                                                        =  Σ 

                                                                                                            Ei 

is a Chi-square distribution with DF=1 
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Example of conformity test for a proportion in which Chi-square (or Normal) 
approximation is possible. 
 
(from E. Truy, Vth Int. Cochlear Implant Conf., New York 1996; p.21): Oblitaration 
of the cochlea was investigated with high resolution computer tomography (HRCT) in 
a sample of 101 candidates for cochlear implantation. Result showed partial or total 
oblitaration of cochlea in 14 cases. Is this compatible with an expected prevalence of 
25% oblitaration in deaf subjects ? 
 
p = 14/101 = 13.86 
np= 14; n(1-p) = 101-14 = 87 
Expected values: 25.25 (25% of 101) and 75.75 (75% of 101) 
 
25.25 and 75.75 are both larger than 5, Chi-square approximation is possible. 
 
Observed values: 14 and 87 
 
χ² = (14-25.25)²/25.25 + (87-75.75)²/75.75 = 6.68 
 
Table shows that test is S (p< .01). Prevalence in sample is significantly lesser than in 
population. 
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Chapter 6. Univariate significance tests for two or several  samples 

•  t-test and ANOVA for 2 means 
• ANOVA for several means 
• Contrasts for means 
•  Chi-square test for 2 proportions 
• Chi-square test for several proportions 
• Contrasts for proportions 
•  Non-Parametric tests 
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• test for a difference between 2 means 
 
Purpose: is the difference between two sample means due to chance or do 
they come from different populations ?  
In other words: is the relationship between a categorical and a 
quantitative variable due to chance or is there some relationship in the 
population ? 
 
 
Null hypothesis (H0) = the 2 population means are equal ( µ1 = µ2) 
 
 
Test Rationale: if population means are equal for the different levels  (H0) then the 
variance of level-means around the grand mean should only be due to  random 
fluctuations (sampling variations). Variance between levels will then be of the same 
nature as variance of individual measurements within each level. Variance between 
levels will be smaller because it is the sampling variance of a mean (σ2

x/n), but a 
simple relationship exists when this is taken into account. 
 
If H0 is true, then:                       σ2

m = σ2
x/n 

 
                                                      n*σ2

m = σ2
x 

 

       n*σ2
m / σ2

x   =1 
 

Estimations of between-category (n*σ2
m ) and within-category  (σ2

x ) variances from 
the data. 
 
Estimation of BETWEEN-category variance = [n1*(m1 - m)2 + n2*(m2 - m)2] 

 
 where n1 n2 are the sample sizes, m is the weighted grand mean. We take weighted 

mean because it the best estimation of the population grand mean under H0. The null 
hypothesis says that data from the different categories are taken from populations with the 
same mean and each data should therefore equally contribute to the estimation of this 
common mean. This is obtained either by adding up the individual data or by weighting the 
category-means by the category-sizes.  
 

Estimation of WITHIN-category variance = s2
x= [Σ(xi1 - m1)2 + Σ(xi2 - m2)2]/ n-2 

 
 where xij are individual data, mj are category means, n is the total sample size. 
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   Sampling distribution of         between category variance 

                                                       within category variance 

 

is a Fisher F distribution with df = 1; n-2 

 

and  

 

Sampling distribution of       between category variance 
                                                       within category variance 
 

 

is a Student t distribution with df = n-2 

 

 
Application condition for F- test and t-test : within category variance should be the same 
for all categories. 
Before testing the significance of the between-  versus within- variance difference we must 
verify that within-category variance is more or less the same for the different categories. If 
this is not true within-category variance estimation will depend on the number of 
observations per category. As the number of observations per category generally changes 
from study to study, this will make that estimation of within-category variance will also 
change. Therefore it is necessary to test the equality of within-category variances (of the 
category-components of the total within-group variance) with either a Cochran-C or a 
Bartlett-Box-F test, or a Levene’s test (the latter is the most resistant to non-Normality). 
These “HOMOSCEDASTICITY” tests should be NON-significant for drawing exactly the 
right conclusions from the ANOVA. For small samples, ANOVA should only be applied if 
at least the B-Box is NON significant. For large samples, we can be more tolerant because 
even small differences between within-category variances are then significant. For equal-
size categories, or small differences between size-categories (so long as the ratio of the 
largest to the smallest category-size is only about 1,5. Note1

                                                           
1 According to Hays (1988), p.373.  

 ), ANOVA can be applied 
whatever the issue of the homoscedasticity tests.  
 
Alternative test: if homogeneity of variance tests are significant, use t-test for 
means with unequal variances. 
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Test of a difference between means (one factor case) 
 

Are Sample Sizes fairly similar ? 
(below limit ratio sample sizes 1.5) 

 
 
 

 
 
ANOVA  
if only 2 means : also T-test  
(option: equal within category  variances)                 

 
 
 

           Are within-category Variances equal? 
                                              (Homogeneity tests:  
                                          Levene’s test or Cochran C or Bartlett) 
 
 
 
 
(Homogeneity tests NS)               (Homogeneity tests S) 
 
 
Kruskal-Wallis test   
if only 2 means : also T-test (or Mann-Whitney) 
(option: UNequal within category  variances) 

    YES     NO 

YES   NO 
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Example in which  ANOVA test (or t-test) can be used for comparing two means: 
effect of sex of newborn on weight at birth. 
 
Data:       n= 749 
 boys   n1 = 398  m1 = 3317.61 g s1 = 521.2753 g 
 girls  n2=  351  m2 = 3135.88 g s2 = 516.9227 g 
 
Calculations for F-test: see SPSS Output 6.1 
 
Bartlett-Box test: NS (p=.871), we can use ANOVA. 
F(df=1,747) = 22.85; S at p<.0005. 
Difference in mean weight between boys and girls is indicated in SPSS Output 
“Estimates - Sex- parameter coeff” . The corresponding t-value (4.78) is the square 
root of the F value (22.85). 
Conclusion: the 181.72 g weight difference between boys and girls is highly 
significant (p<.0005). 
 
Calculations for t-test: see SPSS Output 6.2 
Levene’s test: NS (p=.803), we can use “equal variance option”. 
t(df=747) = 4.78; S at p<.0005. 
Same conclusion. 
 
Conclusion: S at p <.0005. There is less than .0005 chance that mean weight at birth 
difference between boys and girls is due to random variation (sampling variation). 
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Example in which  ANOVA test (or t-test) can NOT be used for comparing two 
means: Application of t- test for unequal variances  
 
Effect of smoking (no coded 0; yes coded 1) on pregnancy duration in a sample of  
569 deliveries. 
 
See SPSS Output 6.3. 
 
Cochran’s C and Bartlett-Box are both  S (p<.0005) so we cannot use ANOVA,  t-test 
for unequal variances should be used instead. 
 
See SPSS Output 6.4. 
 
Levene’s test for equality of variances is S (p=.042), confirming the use of unequal 
variances option. 
 
Conclusion: pregnancy duration is not significantly shorter for smokers (p=.197). 
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• ANOVA test for differences between several means  
 
T-test can not be used for testing equality between several means. ANOVA test is then 
available and is calculated is much the same way as above. The only difference lies in 
the number of degrees of freedom. 
 
Null hypothesis (H0) = the k population means are equal ( µ1 = µ2  ...  = µk) 
 
 
 
   Sampling distribution of         between category variance 

                                                       within category variance 

 

is a Fisher F distribution with df = k-1; n-k 

 

 
Application condition for F- test: within category variance should be the same for all 
categories. 
As above, use Cochran-C or a Bartlett-Box-F test for testing homogeneity of variance. 
 
Alternative test: if homogeneity of variance tests are significant, use Non-
parametric Kruskal-Wallis  test. 
 
Example: neurological data (Ref2

NO NEGLECT 

) :  relationship between Cerebral Blood Flow (CBF) 
and visuo-spatial neglect  ? 

MODERATE NEGLECT SEVERE NEGLECT  
SUBJECT CBF SUBJECT CBF SUBJECT CBF 
16,00 98,82 1,00 88,90 10,00 91,42 
17,00 96,22 2,00 82,66 11,00 91,64 
18,00 98,84 3,00 94,44 12,00 87,34 
19,00 100,56 4,00 91,70 13,00 88,06 
20,00 102,96 5,00 90,38 14,00 90,72 
21,00 95,84 6,00 95,40 15,00 91,90 
22,00 95,62 7,00 99,02   
23,00 92,96 8,00 90,86   
24,00 100,66 9,00 92,14   
25,00 100,24     
26,00 102,40     
27,00 94,92     
28,00 99,74     
m1 98,44 m2 91,72 m3 90,18 
S1  3,07 S2   4,57 S3  1,97 

                                                           
2 Demeurisse, G., Hublet, Cl., Paternot, J., Colson, C. and Serniclaes, W. (1997) “Pathogenesis of 
subcortical visuo-spatial neglect. A HMPAO SPECT study” Neuropsychologia. 35, 731-735.   
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Homogeneity of variance tests are NS (See SPSS Output 6.5). ANOVA can be used 
and shows that relationship between CBF and neglect is S (F(df=2,25)= 16.03; 
p<.0005).  
 
 
 
•     Example of Kruskal-Wallis test 
Relationship between pregnancy duration and environment (in 4 categories, from town 
center=1 to periphery =4). See SPSS Output 6.8. 
As homogeneity tests are highly significant (p<.0005) , we check the apparent 
significant relationship between pregnancy duration and environment (p=.017) with 
Kruskal-Wallis test. 
Conclusion : relationship between pregnancy duration and environment is NS 
(p=0.20). 
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• Contrasts between means 
 
If ANOVA is significant, not all the differences between means are necessarily significant. 
Tests of differences between individual means or between specific combinations of means 
called”contrasts” are then possible. 
 

A "contrast" is any combination of means or proportions of the form: 

 

              contrast =  Σ  cjmj with   Σ  cj = 0 

 

Examples:  

0.5* m1  -  0.5* m2 is a contrast 

 m1  -   m2 is a contrast 

2* m1  -   m2 is NOT a contrast 

 
Contrast coefficients: these are the cj  scaling values. 

Contrast types: 

 
“DEVIATION-last” contrast  (default option)= each level of the factor except the last is compared to 
the grand mean 
 

“DEVIATION-first” contrast = each level of the factor except the first is compared to the grand mean 
 
“SIMPLE-last” contrast = each level of the factor except the last is compared to the last level 
 
“SIMPLE-first” contrast = each level of the factor except the first is compared to the first level 

 
“DIFFERENCE” contrast = each level of the factor except the first is compared to the mean of previous 
levels 
 
“HELMERT” contrast = each level of the factor except the last is compared to the mean of subsequent 
levels 
 

“REPEATED” contrast = comparisons between adjacent levels. 
 
Example: with the CBF-neglect data taking simple-first contrasts allow to compare 

mean CBF for each of the two neglect categories to CBF of the no-neglect category 
(coded 1, hence first category). (see SPSS Output 6.5). 

 
Contrast coefficients show that the -6.72 difference between mean CBF of neglect 

category 2 vs. 1 (moderate neglect vs. no neglect) is S (p= .00014). 
The -8.26 difference between category 3 vs 1 (severe neglect vs. no neglect) is also S 

(p=. 00006). 
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Comparison between the moderate and severe neglect are obtained by taking repeated 
contrasts (SPSS Output 6.6)  which shows that the mean CBF difference between 
degrees of neglect is not significant (p=.40573). 

 
• options for confidence intervals when testing multiple contrasts 
 

 

There are 3 options for confidence intervals when testing multiple contrasts (all 
pairwise contrasts in SPSS-ANOVA, see “POST-HOC”): 
 
“INDIVIDUAL” (default option): the p value is not corrected 
“BONFERRONI”: the p value is corrected for the number of contrasts tested; this is 
achieved by taking a p-value corresponding to .05*number of comparisons (.05*3 = 
.15 in the CBF-neglect example) 
“SCHEFFE”: the p value is corrected for testing all possible contrasts. 
 
Example: changing the options for confidence intervals with the CBF-neglect data 
taking simple-first contrasts (see SPSS Output 6.7). 
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•  Chi-square and Fisher-exact  tests for a difference between 2 
proportions 
 
The relationship between two related categorical variables can be represented in 
frequency tables with one variable in line and the other in columns. Each variable can 
display two or several categories and the complexity of the table is measured by the 
number of possible sources of independent variation inside the table, or degrees of 
freedom (DF). The 2 by 2 table with 2 categories for each variable is the simplest one. 
A 2 by 2 table has only 1 DF because for a given sample size and a given pattern of 
marginal frequencies, there is only  free frequency inside the table. Knowing the 
frequency of 1 out of the 3 inner cells allows to know the 3 other ones. 
 
 
We saw that conformity of a proportion to a population value can be tested by a 
Pearson Chi-square. This test  can also be used for testing differences between 2 
proportions. Expected frequencies for this application of Chi-square are calculated 
from the data. They correspond to the frequencies that would be obtained in each 
sample if there were no differences between the two sample proportions. 
 
Null hypothesis (H0):  P1 = P2 

 
       
 

                                                                    (Oi-Ei)
2 

       χ2     (DF=1)      =   Σ 

                                                  Ei 

 

where Oi are observed frequencies and Ei are expected frequencies 
Ei= line total*column total/grand total 

 
Application condition: at least 80% of the expected frequencies (Ei ) must be larger than or 

equal to 5 

 

Alternative test:      Fisher Exact Probability test. 
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Example: effect of sex of newborn on proportion of low-weight at birth (below 2.5kg). 
 
See SPSS Output 6.9 
 
Data:       n= 1095 
 boys   n1 = 594 prop(loweight) =  125 /594 =   21 % 
 girls  n2=  501 prop(loweight) =   95  /501 =   20 % 
 
 
No cells with expected frequencies lower than 5 (Min. E = 26.712). We can use the 
chi-square test. (otherwise we should have used the Fisher exact test, also given in 
SPSS output). 
 
Chi-square (df=1) = .734 ; NS (p=.39) 
 
Conclusion: There is more than 5 % chance that the higher proportion of low-weight 
at birth for girls vs. boys (10.0 vs 5.5 %) is due to random variation (sampling 
variation). Therefore we conclude that the proportion of low-weight births does not 
depend on sex. 
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• Chi-square test for differences between several  proportions  
  
Instead of a 2 by 2 table we now have a 2 by  k table, where k is the number of 
samples. The complexity of the table is measured by the number of possible sources 
of independent variation inside the table, or degrees of freedom (DF). The 2 by 2 
table with 2 categories for each variable is the simplest one. A 2 by 2 table has only 1 
DF because for a given sample size and a given pattern of marginal frequencies, there 
is only  free frequency inside the table. Knowing the frequency of 1 out of the 3 inner 
cells allows to know the 3 other ones. A table with 2 lines and 3 columns (or just the 
same 3 lines and 2 columns) has 2 DF because it is possible to deduce all cell values 
from 2 out of them, not less. A general rule for calculating DFs  is to take the 
following product: 
 
DF = (L-1)*(C-1) 
 
L= number of  lines in table (say predictor’s  categories) 
C= number of  columns in table (say dependent variable categories). 
 
For each DF there is a corresponding Chi-square, the formula remaining unchanged.. 
Only DF change which means that threshold value for significance gets larger as DF 
increase (check in Table). 
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Example of Chi-square between several proportions ( from Colton p.179). 
 
 
 
 
 
 
 
DF = (2-1)*(4-1) = 3 
 
As number of cells with expected frequencies lesser than 5 is lesser than 20% (12.5%, 
see SPSS Output 6.10) Chi-square is applicable. Relationship between bloodgroup 
and throembolism rate is significant (p<.001). 
 
•  contrasts between proportions 
 
Pairwise differences between proportions can also be tested by Chi-square. More 
generally, contrasts between proportions can be tested by Chi-square. Contrasts are 
defined exactly in the same way as for means: 
 
contrast =  Σ  cjpj with   Σ  cj = 0 
 
 
In SPSS, contrasts between proportions are not provided automatically in Crosstabs 
Command. We will see later (Chapt. 7) how to obtain automatic contrasts with the 
Logistic Regression command.  
 
 
 
 
 

 A B AB O Total 
THR+ 32 8 6 9  55 
THR- 51 19 5 70 145 
Total 83 27 11 79 200 
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Chapter 7. Univariate Regression 
 

• taxonomy of bivariate relationships 
• Linear regression 
• Non-parametric tests 
• Logistic regression 
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• taxonomy of bivariate relationships 
 
A common issue in scientific research is to see if there is a relationship 
between two or several variables. Consider the following examples with two 
variables.  
 
Examples involving bivariate relationships. 
 
(I) Does weight at birth depend on sex ? 
(II) Does the rate of low-weight at birth of depend on sex ? 
(III) Does systolic pressure depend on age ? 
(IV) Is low-weight at birth related to skull perimeter ? 
 
Some of these variables are quantitative (weight at birth, systolic pressure, 
age). Others are categorical (sex, low-weight at birth). But in each example 
the question is to know whether one variable depends on the other. In 
statistical terms: 
 
(I) whether mean weight at birth is different for females vs. males; 
(II) whether proportion of low-weight at birth is different for females vs. males; 
(III) whether systolic pressure is correlated with age; 
(IV) whether low-weight at birth is correlated to skull perimeter. 
 
Differences between means and proportions were treated in the previous 
chapter. In this chapter we will consider regression between 2 variables. 
 
 
variable types 
 
(independent-
dependent) 

description statistical models 
 

categorical - 
quantitative 
 

difference between means 
example (I) 

• ANOVA (or t-test) for 
means 

categorical - 
categorical 
 
 

difference between proportions  
Odds Ratio (OR) 
example (II) 
 

• Pearson Chi-square 
• -2LL Chi-square  for 
 logistic regression 
 

quantitative - 
quantitative 

correlation coefficient (R) 
example (III) 
 

• ANOVA (or t-test) for 
linear regression 

quantitative - 
categorical  
 

Odds Ratio (OR) 
example (IV) 
 

• -2LL Chi-square  for 
 logistic regression 
 

 
 
•   Linear Regression 
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Linear regression consists in predicting of the value of a quantitative variable 
with another quantitative variable with the help of a linear equation. In order to 
obtain a linear equation which provides the "best" description of the 
relationship between y and x (see Fig.7.1 scatter diagram), least square 
estimations of the slope of the line (symbol b, also called "regression 
coefficient") and of the intercept (symbol a) are taken. These LSE minimize 
the squared differences between the observed values (y) and the predicted 
values (y'). 
The regression equation does not provide a measure of the strength of the 
linear relationship between the variables. The slope of the regression line 
cannot be used in this purpose because it depends on the variances. The 
slope (b gets smaller either when the variance of x gets larger or when the 
variance of y gets smaller. (In other words, the higher the s2x/s2y ratio the 
smaller the regression coefficient). The latter is thus not a good index of 
relationship between the variables because it depends on the units of 
measurement. The correlation coefficient (symbol R) provides a measure of 
strength of relationship which is independent of the variances.The R does not 
depend on measurement units and varies between -1 and +1. 
+1 indicates a perfect linear relationship 

0 indicates the absence of relationship 

-1 indicates a perfect inverse linear relationship 
The r does not give a proportionnal measure of relationship. This is given by 
taking R² (which is lower than r except for r=0 or r=1). R² is the  proportion of 
variation of one variable which is explained by the other, or proportion of 
explained variation.. 
The R gives an index of LINEAR relationship. A strong curvilinear relationship 
is always possible even with r=0 . 
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Plot of Syst. Pressure with Age
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Fig.7.1 Relationship between age and blood pressure (from Colton, pp.191 & 
192).   
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Linear Regression 

 

Equation                    y’ = a + bx 
 
     where y and x are two quantitative variables 
 
     y is the dependent variable 
 
     y’ is the linear estimation of  the “dependent variable” 
 
     x is the “independent” variable 
 
 
Residual SS              Σ  (yi  -  y’i )2 

Explained SS            Σ  (y’i  - my )2 

Total SS                   Σ  (yi  - my )2 
 
Least squares estimations  
 
 
 

                                                                    Σ  (xi -mx)*(yi -my)/(n-1)      covariance (x,y) 
                                                  b =                                          = 
                                                            Σ  (xi -mx)2/(n-1)                   variance  (x)   
 
 
      my = a + b mx 
 
                                                  a = my – b*mx 
 
      y’ = my – b*mx + bx 
Equation                                   y' = my + b (x-mx) 
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Correlation Coefficient 
 
                                                                                         covariance (x,y)          
                                                                         R = 
                                                                               √ variance (x)* variance (y)  
  
 
Proportion of Explained variation 
                                                                              Σ  (y'i - my)2        explained SS  
                                                                 R2 =                            = 
                                                                               Σ  (yi - my)2          total SS 
 

 

 

 
Example: prediction of systolic pressure as a function of age (see Colton, 
p.189, for a sample of 33 women) 
 
 
y = systolic pressure in mm Hg 
x =age in years 
y'= linear estimation of pressure from age. 
 
                       b = 1.2 mm Hg per year of age 
 
                       a = 81.5 mm Hg 
 
    predicted pressure = 138.6 + 1.2*(age - 46.7) 
 
where 138.6 = mean pressure and 46.7 = mean age 
 
r=.72 and r2=.52, which means that 52% of blood pressure variation is 
explained by age differences, and vice-versa. 
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Fig. 7.2: Correlation strength. 
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•  test for Linear regression 
 
Purpose: is the correlation due to chance only or is there some 
correlation in the population 
 
 
t-test and ANOVA for correlation  
 
 
Observed correlation = R 
 
Null hypothesis (H0) = ρ= 0 
 
                                                                               
Sampling distribution of                     R            
 
                                                       √(1-R2)/(n-2) 
 
 

is a Student's t distribution with df = n - 2  
 
Alternatively sampling distribution of             R²            explained SS 
                                                                  (1-R²)/(n-2)      residual SS/(n-2) 
          

is a Fisher F distribution with df = 1; n - 2  
 
 
Application condition for F test :  
 
• Relationship should be fairly linear. 
• Scatter distribution should be free of deviant values points located outside 
the bulk of the scatter diagram because they have larger effects than others 
on R value. 
• Residual y variance should be fairly constant for the different x values: no 
outliers (“homoscedasticity” requirement). 
 
 
Alternative nonparametric test 
Kendall's Tau (τ ) coefficient: is only based on ordinal information. 

The H0 is the absence of any relationship between rank orders when subjects 

are separately classified as a function of each variable. Then there is 50 % 

 = 
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chance for any two subjects to be classified in the same order on both 

dimensions.  

The calculation of Kendall τ coefficient is based on the difference between the 

number of agreements and disagreements between classifications. For small 

samples (n smaller than 30), the type I error is obtained from specific sampling 

distributions (Siegel & Castellan, 1988, Tables R). For larger samples, the 

sampling distribution can be approximated by a Normal deviate (z value). 
 
 
•  Examples for Linear regression tests 
 
Example 1: bloodpressure-age data  
see SPSS ouput 7.1 
 
Pearson R = .72  (n=33) 
 
t value (df=31)  =   (.72)/√(1-.72²)/31  =  5.78  (S at  p <.001) 
 
F value (df=1; 31) =  (.72²)/(1-.72²)/31  =  33.37  (S at p <.001)   
 
 
Application condition: scatter (see Chapter 4) shows relation is fairly linear, 
without deviant points. Residual analysis (SPSS output) does not reveal 
outliers more than 3 SD apart. 
 
 
Example 2: data for which Pearson R is not relevant. 
Correlation between cerebral bloodflow in two different cerebral regions 
(n=28). 
 
See SPSS Output 7.2 
 
Pearson R =0.44 and is significant (S at P= .018) but this is due to the outlier 
with low CBF in both regions, outside the bulk of the data. Kendall τ = 0.19 is 
NS (p=.16).  
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 Linear Regression: guidelines 
 
The output of the correlation procedure can distorted by: non-linearity, deviant 
cases, influential cases, colinarity (among others).  
 
Non-linearity is detected by fitting the data with a quadratic function; a non-
linear regression is suspected if the latter is visibly different from a straight 
line. Non-linearity can deflate the R. Solution: use a nonlinear transform of the 
X or Y variables (log, or exponential). Growth curves are typically exponential. 
Taking the logarithm of age allows then to linearize the regression. 
 
Deviant cases are detected by examining the differences between observed and 
predicted values (or “residuals”) scaled  in number of SD (Zresiduals). ZResiduals 
larger than 3 can either inflate or deflate the R, although their effect depend on the 
sample size (the larger the sample, the more extreme the residuals have to be for 
having substantial effects). An example is given below. 
 
Influential cases can also inflate the R. They can be detected by comparing the 
residual with the “deleted residual”, which is the residual calculated for a case when it 
is not included. The case is influential if the difference is fairly large. Another way of 
detecting influential cases is to examine Cook’s distance, which considers the changes 
in all residuals when the case is omitted.  Influential cases contribute to inflate the R. 
An example is given below. 
 
Colinearity makes the selection of two (or several) predictors hazardous. Colinearity is 
detected by a high R² between one of the predictors and the other ones, or just the 
same, by a low “Tolerance” (1-R²). Colinearity means that different predictors explain 
much the same part of the variance of the independent variable. It can be avoided by 
taking only one of the correlated predictors (e.g.: only the number of living children,  
not gestity , parity …). Another solution is to create a new variable which combines 
the different correlated predictors. The formula for the linear combination can be 
based on “Factorial Analysis”.  
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Case Number Std. Residual SYSTPR1 Predicted 

Value 
Residual 

96 -5.687 128 208.31 -80.31 
250 3.079 178 134.52 43.48 
262 3.273 210 163.78 46.22 
272 3.053 184 140.88 43.12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example of deviant case. Relationship between diastolic pressure and systolic pressure in a 
sample of  295 male adults. A deviant value appears in the original data (upper figure), 
seemingly due to an inversion between the two measurements. The deviant value is excluded 
in the lower figure. The R2 increases from 0.24 with the deviant value included to 0.35 after 
excluding this value. 
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residual deleted 
residual 

Cook’s 
distance 

-0.29 -0.33 0.00 
-5.50 -17.03 3.26 
-2.38 -2.72 0.02 
0.42 0.49 0.00 

-3.93 -4.62 0.05 
7.01 7.89 0.12 
1.78 2.57 0.03 
8.60 10.98 0.43 

-5.73 -6.87 0.13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example of influential case. Relationship between bloodflow in two brain aeras in a sample 
of  9 patients suffering from cognitive neglect after stroke. An influential value appears in the 
original data (left figure). The value is quite visible on graph as well as in the table of residual 
values: the deleted residual1 is much larger than the residual and Cook’s distance2

                                            
1 The “deleted residual” is the residual calculated when the case is not included. 
2 The “Cook’s distance” considers the changes in all residuals when the case is omitted. 

 is large. 
This value is excluded in the lower figure. The R2 decreases from 0.46 (S, p=.046) with the 
influential value included to 0.0007 (NS, p=.95)  after excluding this value. 
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• Logistic Regression  
 
Logistic regression can be used for predicting of the value of a categorical 
variable with a quantitative variable. Regression is not linear in this situation. 
Let us take the case of single proportion corresponding to a binary variable. 
The relationship between the proportion and the quantitative variable is 
generally S-shaped.. The proportion changes slowly for extreme values close 
to either 0 or 100% and changes more and more rapidly as values get closer 
to 50% (Fig.7.3).  S-shaped curves can be fitted either with Logistic 
functions or with Cumulative Normal functions. Any Logistic function can 
be transformed into a linear function by transforming the proportion into a 
Logit. Any Cumulative Normal function can be transformed into a linear 
function by transforming the proportion into a Probit. Logistic fitting is often 
preferred because Logistic equation is much more simple than the 
Cumulative Normal. 
 
 

LOGISTIC function and LOGIT 
 
                                      ey’ 
P’(disease / x)  = ______________     
                                   ey’ +  1 
 
 
 
where y’ = a + bx = logit P’ = ln [P’/(1-P’)] 
 
Examples: 
 
logit 0.5 = 0 
logit 0.9 = 2.197 
logit 0.1 = -2.197 
logit 0.95 = 2.944 
 
MAXIMUM LIKELIHOOD FITTING 
 
The fit of the Logistic function to the observed proportions is based on 
“likelihood” calculations.  
 
The likelihood of an observed proportion is the probability to find this 
proportion in a sample for a given theoretical value. 
 
For example, with a theoretical value of .60 and a sample of size 10, the 
likelihood of any proportion p is the probability to obtain p in a sample of 
size 10 as given by the Binomial formula.  
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Thus: 
 
likelihood (.7) = 10!/ 7!3! (.6)7(.4) 3 = .2150 
likelihood (.6) = 10!/ 6!4! (.6)6(.4) 4 = .2508 
 
The likelihood of an observed proportion gets larger when the theoretical 
proportion is closer.  
 
If there is only one observed proportion, and if we are free to choose any 
theoretical value (suppose we just want to estimate the “best” population 
value for an observed proportion), then the best “likelihood” estimation of 
the theoretical value is simply the observed value (in the above example: .6). 
This value gives the highest possible likelihood. 
 
Now if there are several proportions and if we want estimations which are 
linked to some quantitative variable by a logistic curve, then the best 
possible “likelihood” estimations are those who give the highest joint 
likelihood. 
 
Joint likelihood is simply the product on individual likelihoods:  
 
JOINT LIKELIHOOD: L(P’1 P’2 ..... P’n)= L(P’1)*L(P’2) ... *L(P’n) 
 
 
Summary: fitting of a logistic curve to proportions as a function of some 
predictor (X) is achieved by calculating P’ values which jointly maximize 
their likelihood. 
Comparison with linear regression: fitting of a linear regression curve was 
obtained by maximizing explained variance (or minimizing residual 
variance). It can be shown that this procedure is a special case of maximum 
likelihood fitting, but which can only be used for quantitative dependent 
variables, not for proportions.  
 
 
 
 
 



Willy Serniclaes- Statistical Methods - Master in Public Health Methodology  - Chapter 7 99 

 

 
 

PROBABILITY of  LOW WEIGHT at birth 
as a LOGISTIC function of SKULL perimeter alone 

 
P (LOW WEIGHT ) =     eY’ / (eY’ + 1) 

where Y’ = 22.3 - 0.71*skull = 0.71 *(31.4 –skull) 
Y' is the "LOGIT" of the Probability 

 
Fig.7.3 LOGIT of  P( LOW WEIGHT) at birth as a LINEAR function of 
SKULL perimeter alone 
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Logistic Regression tests with a quantitative predictor  
 
Null Model (Model 0):   Logit p(y) = α  
 X1 Model  (Model 1):  Logit p(y) = α + β1x1 
 
 
Null hypothesis (H0) = β1= 0  
 
is tested by comparing likelihood for Model 1 with likelihood for Model 0. 
Likelihood is always better for Model 1 (because a predictor is included). 
But is the difference large enough for being significant ? 
 
For assessing significance, we take the “improvement Chi-square” 
                                                                               
                                  = -  2 ln (L0/L1) 

where  
 
L1 = Likelihood with Model 1 
L0 = Likelihood with Model 0 
 
Sampling distribution of this expression is approx. Chi-square distribution with df 
= 1 (as the model contains a single predictor). 
 
Alternative test of improvement  takes less computer processing time: 

    WALD approximate χ2 test 
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Application condition  :the logistic curve should fit the data. This is the case 

“Hosmer-Lemeshow” Chi-square is not significant. 
 
    
 
Example of logistic regression: example with a quantitative predictor: Effect of 
skull perimeter on weight at birth in two categories .  
see Output 7.3 
 
Hosmer-Lemeshow Chi-square is not significant (p=.46), so we can use the 
Logistic model. 
 
Slope is negative (b=-0.71) which means that proportion low-weight at birth 
diminishes with increasing skull perimeter (presence of low-weight at birth is 
coded 1).  OR = .492 (=exp(-.71)) which means that odds of loweight gets 
49.2 % lower for each 1 cm increase of skull perimeter. As the constant is 
22.3 the skull perimeter for which a 50% proportion low-weight is expected 
can calculated as follows: 
 
50% is 0 in logits 
 
0 = 22.3 -0.71*skull 
 
skull = 22.3/0.71 ≅ 31.4 cm (see Fig.7.3). 
 
Both Improvement Chi-square (X²(df=1)= 227) and Wald test (X²(df=) =148) 
are highly significant (p <.001). 
 
Conclusion: relationship between skull perimeter and low-weight at birth is 
highly S ( p <.001). As expected, proportion low-weight babies (below 2.5 kg) 
is inversely related to skull perimeter. 
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• Logistic Regression tests with a categorical predictor  
 
Comparing proportions in 2 samples can also be handled by Logistic regression. Take the 
example of proportion decease at birth as a function of sex.  Sex, as any dummy variable, can 
be assigned two numerical values (0 and 1 for instance) and can then treated as an elementary 
quantitative variable. We can therefore perfectly use Logistic regression for describing the 
relationship between a proportion (say rate of decease) and a dummy variable (say sex). The 
model writes as follows: 
 
logit p (decease) = α + β*(Sex) 
 
where sex takes values 0 or 1. 
 
The interest of proceeding in this way is that it makes it possible to combine categorical and 
quantitative predictors within the same model (see Chapter 9). For the while, using the Logistic 
model for proportions has the practical advantage of  giving automatic tests for contrasts 
between proportions in SPSS.  
 
• Coefficients 
 
Delta percentage, RR (constant = 2 here), OR the best one for research (see  Fleiss, pp. 90…). 
 
Up to some 10 %, OR (Logistic function) can be approx. by RR (logarithmic function). 
 
Interest of RR: easier to understand, way open to other epidemiological coefficients (see RL). 
 
P Logit (P)  RR loge OR OR 

50% 0 50% vs 25% 2 1,10 3,00 
25% -1,10     
20% -1,39 20% vs 10% 2 0,81 2,25 
10% -2,20 10% vs 5% 2 0,75 2,11 

5% -2,94     
4% -3,18 4% vs 2% 2 0,71 2,04 
2% -3,89 2% vs 1% 2 0,70 2,02 
1% -4,60     
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• Contrasts and Odds Ratios  
 
But there more about this. With a categorical predictor, the slope (β) is directly related to the 
Odds Ratio (O.R.). 
 
Odds Ratio (OR) 
 
                                                                                            a/c      a/b 
                                                                  OR = ad/bc =            =         
                                                                                           b/d       c/d 
 
 
Relationship between ODDS RATIO and Logistic Regression 
coefficients 
   
IF E is coded (0,1) difference between E+ and E- correspond to 1 
unit  
 
   ln(OR) = Ln (a/b) - Ln(c/d) 
                                      =   logit (p(D+/E+)) - logit (p(D+/E-)) 
                                = increase logit D for 1 unit increase of E =  βE 
   
    Thus  ln(OR)  = βE 

 
                                                     OR = eβE 
  
 IF E is coded (-1,1) difference between E+ and E- correspond to 2 
units  
  
  Ln(OR) = logit (p(D+/E+)) - logit (p(D+/E-)) 
          = increase logit D for 2 units increase of E 
        =  2βE 

 
      Thus ln(OR)  = 2βE 

 
                                                                       OR = e2βE 
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Example with a 2 by 2 table:  association between perinatal health & mother's 
age 
 
 
 
 
 
 
 
 
 
 
 
O.R. = 10*135/40*15 = 2.25   
See SPSS Output 7.4 for comparing OR and slope of logistic curve with two 
SPSS commands (Crosstabs and Logistic Regression) 
 
• Contrasts for several proportions 
 
Just as for means, we can test different kinds of contrasts between proportions (see previous 
Chapter). Logistic regression allows to do this. Contrasts available in SPSS Logistic Regression 
command are the same as those in ANOVA General Factorial plus a further one: INDICATOR 
contrast. With indicator contrast any category can be taken as reference and pairwise differences 
between reference and all other categories are tested. 
 
 
Contrast types: the same as for ANOVA-means plus “indicator” type which is specific 
to Logistic-proportions. Interest of indicator contrasts for categorical predictors with 
DF > 1 (more than 2 categories) because any category can be taken as reference (as 
“indicator”). This is not possible with simple contrasts, which can only take the last or 
the first category as reference.  
 
“DEVIATION-last” contrast  (default option)= each level of the factor except the last 
is compared to the grand mean 
 
“DEVIATION-first” contrast = each level of the factor except the first is compared to 
the grand mean 
 
“INDICATOR” contrast  = each level of the factor except one taken as reference  is 
compared to the reference 
 
“SIMPLE-last” contrast = each level of the factor except the last is compared to the 
last level 
 
“SIMPLE-first” contrast = each level of the factor except the first is compared to the 
first level 

 diseased healthy  
age ≤ 20 years 10 40   50 
age>20 years 15 135 150 

 25 175 200 
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“DIFFERENCE” contrast = each level of the factor except the first is compared to the 
mean of previous levels 
 
“HELMERT” contrast = each level of the factor except the last is compared to the 
mean of subsequent levels 
 
“REPEATED” contrast = each level of the factor except the last is compared to the 
next level 
 
 
 
Example of indicator contrast with several proportions: bloodgroup- throembolism (see SPSS 
Output 7.5). With bloodgroup AB which has the highest THR rate as indicator (group coded 3), 
contrasts are NS for bloodgroup A (p=.3156) and for B (p=.1557). Only contrast with 
bloodgroup O is S (p=.0015). 
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Chapter 8. Sampling Methods 

 

8.1 Concepts and methods   

There are two key concepts in estimation: bias and precision. 

The primary requirement for the obtention of unbiased estimates 

is that the population sampled corresponds to the target 

population (see Introduction). Classical instances of bias are 

"Berkson's fallacy" for case-control studies carried exclusively 

in hospital and out-of-sight bias in follow-up studies 

(Kleinbaum et al., American J. of Epidemiology, 1981, 452-463). 

Berkson's fallacy is due to the fact that the risks of 

hospitalisation can combine within patients, which gives rise to 

a selection bias. Out-of-sight subjects in follow-ups do not 

occur independently of other characteristics, and can therefore 

also have filtering effects.  

 
---------------------------------------------------------------- 
Example of bias in the realization of a survey: Sample of 
households in Syracuse (USA) in 1930-1931: Distribution of 
households according to size, in the original sample and in the 
census tract. Households of one were not incuded in the survey 
(from Kiser (1934) in Yates,F.R.S. (1981) "Sampling Methods for 
Censuses and Surveys" 4th edition, High Wycombe, Bucks, England: 
Ch. Griffin; p.11) 
 
Number   Original sample  Census tracts 
in household    Number      %  Number  %         
________________________________________________________________ 
 
 2   254   19.4  1762   26.8 
 
 3   338   25.9  1745   26.5 
 
 4   307   23.5  1438   21.9 
 
 5   201   15.4   853   13.0 
 
 6   106    8.1   388    5.9 
 
 7    46    3.5   208    3.2 
 
 8    25    1.9    96    1.5 
 
 9 and more  29    2.2    86    1.3 
________________________________________________________________ 
 
As can be seen, the households with 2 members are 
underrepresented. This arises from the fact that women without 
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 children are more often absent and enumerators did not return 
to these places to collect the information. 
---------------------------------------------------------------- 

The precision of the estimates depends on their variance and on 

the size of the sample. Given the tradeoff between these 3 

parameters, the size of the sample can be specified beforehand 

if the required precision is provided and variance is estimated 

on some other grounds. 

 

 

Choice of the method: 

 

     Simple random sampling: each individual 

is extracted at random and independently of the others. 

 

     Systematic sampling: an individual is 

extracted at regular intervals. 

 

     Stratified sampling: the population is 

partitioned into groups, or "strata", and individuals are 

thereafter sampled within each stratum. 

 

     Cluster sampling: clusters of 

individuals, grouped as a function of spatial or temporal 

proximity, are sampled first and individuals are thereafter 

sampled within each cluster. 

 

 

Although SRS provides a simple basis for theoretical 

developments, it also has several drawbacks. Some of these are 

practical: 

    - SRS requires the enumeration, and hence 

the identification, of all the units of the population. This is 

not possible if there is no available file containing all the 

units. 

    - the items of the sample can be largely 

dispersed, which is time consuming. 



Statistical Methods - Master in Public Health Methodology  - Chapter 8                                                                        109 

 
 

Other problems are of theoretical nature, in the sense that they 

can give rise to biases: 

    -some subset of the population, 

characterized by a specific feature which may affect the 

variable under study, may be underepresented, or 

overrepresented, in the sample (because there is no direct 

control). 

 

8.2 Simple random sampling 

 

A sample of n elements extracted from a given population is a 

"SIMPLE RANDOM SAMPLE" if the extraction procedure is conceived 

in such a way that all the possible samples of n elements have 

the same probability to be extracted from the population. 

Let us consider a finite population of N elements and a sample 

of n elements which are extracted without replacement from the 

population. The total number of possible samples of size n is: 

 

            T = CnN = N ! / n! (N-n)! 

 

and, for the sample to be simple and random, the probability of 

extracting a given sample of size n must be : 

 

 
                        n! (N-n) ! 
                       ----------- 
                            N !     

 

This condition will be fulfilled if elements are extracted at 

random and indenpendently of each other from the population. 
................................................................ 
Mathematical development 
If each element of the sample is taken at random from the 
population, the probability of an element being selected is 1/N 
for the first, 1/(N-1) for the second, 1/(N-2) for the 
third...,1/(N-n+1) for the last element. If the elements are 
extracted independently, the probability that the n elements are 
extracted in a specific order is, on the basis of the law for 
combination of independent events:    
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    1      1      1          1          (N-n)! 
   --- *  --- *  --- *  ... ----     =  ------ 
    N     N-1    N-2        N-n-1         N ! 
 
 
As there are n! possible orders in which the same elements of 
the population can enter the sample, the probability of 
extracting a given sample of n elements is: 
 
 
                        n! (N-n) !/ N !     
 
................................................................ 
 

Procedure for simple random sampling 

A list containing the N elements of the population is 

constructed. This is the "SAMPLING BASIS". Each element is given 

a number from 1 to N. The n elements of the sample are extracted 

by using a table of random numbers or a computer with a random 

numbers generator. 

_______________________________________________________________ 

Random number generation: see SPSS or EpiInfo. 

8.3 Systematic Sampling 

 

The idea is to subdivide the population into zones, a single 

item being extracted at random within each zone. The main 

advantage is that the sample is more uniformly spread over the 

population.  

 

For a finite population, n zones each containing k items are 

created (k = N/n = "SAMPLING INTERVAL"). In each zone, the ith 

item is extracted, i being taken at random between 1 and k.  

---------------------------------------------------------------- 
Example: Take a systematic sample of 9 students in  a classroom 
of 27. The sampling interval is 27/9 = 3. Take a number between 
1 and 3 at random. Suppose 2 is taken. Extract students number 
2, 5, 8, 11, 14, 17, 20, 23, 26. 

---------------------------------------------------------------- 

 

Another advantage of systematic sampling is that the population 

need not to be known before the initiation of the sampling.  

 
---------------------------------------------------------------- 
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Examples: 
In a study on intensive care, we can, for instance, decide to 
take one patient over 10 to enter an emergency room  
---------------------------------------------------------------- 

Systematic sampling can be a source of bias in case of cyclic 

variations. This is especially the case if the zone size 

corresponds to the cycle size. 
---------------------------------------------------------------- 
Example of bias with systematic sampling: in a comparative study 
on hospital work in different departments, a zone size of 7 
days, from Sunday to Sunday, would certainly overemphasize the 
degree of activity of the emergency room. 
---------------------------------------------------------------- 
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8.4 Stratified sampling 

 

8.4.1 A stratum is a subgroup of the population, in which the 

individuals share a common characteristic which is or could be 

related to the variable under study. After the population has 

been subdivided into strata, individuals are extracted at random 

within each stratum. This allows to control a possible biasing 

effect from the confounding characteristic. Indeed, random 

sampling alone does not guarantee that distribution of the 

confounding feature in the sample will be equivalent to its 

distribution in the population. On the contrary, sampling 

variation will also affect the confounder, which makes that the 

corresponding categories will be either underepresented or 

overepresented in the sample, to a degree which depends on 

chance. Subdividing the population into strata allows to 

neutralize the sampling variability of the confounding feature. 

 
---------------------------------------------------------------- 
Example: In a study on the Reception of Patients in the 
hospital, individuals belonging to different communities are 
extracted separately from the population, in order to control 
the proportion of people from each community in the sample. 
---------------------------------------------------------------- 

 

Different sampling methods can be used for extracting the items 

in each strata: simple random sampling, systematic sampling... 
 
---------------------------------------------------------------- 
 
In the previous example: for each community, patients can be 
extracted at random and independently from the hospital file 
(SRS), or a specific proportion of those leaving the day after 
can be taken each day during one week (systematic sampling). 
---------------------------------------------------------------- 

 

Two different approaches can be taken for specifying the number 

of items per stratum: equal or proportional allocation. Equal 

allocation means that the same number of items is taken for each 

stratum, which makes that the distribution of the confounding 

feature in the sample is generally not representative of the 

population. This method is preferable when the aim of the study 

is to make comparisons between strata, rather than obtaining an 
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estimation of the mean value across strata. Indeed, the 

statistical power of comparisons tests will be higher with equal 

sized samples. 

 On the contrary, proportionnal allocation should be used if 

the major objective of the survey is to provide a population 

estimation of a mean value, or of the proportion of some other 

attribute than the one used for stratification. Indeed, the 

practical task of collecting the sample and the formulas for 

estimating parameters will be simpler. Concerning the formulas, 

the samples will be "self-weighted", which means that weighting 

coefficients will not be required for the obtention of unbiased 

estimates. 

 
---------------------------------------------------------------- 
In the previous example on the Reception of Patients; let us 
suppose that there are 4 communities with relative frequencies 
of 60 %, 20 %, 15 % and 5 %. In order to make comparisons 
between the degrees of satisfaction between communities, the 4 
subsamples should have the same size (e.g. 500 for a total of 
2000). On the contrary, if the primary aim of the study is to 
estimate the overall degree of satisfaction, the subsamples 
should be proportionnal to the population frequencies (e.g. 
1200, 400, 300 and 100 for a total of 2000). This will also 
facilitate the practical realization of the survey. 
---------------------------------------------------------------- 
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8.4.2 Several simultaneous stratifications can be performed, 

each correponding to a possible confounder. This is called 

"MULTIPLE STRATIFICATION". 

 
---------------------------------------------------------------- 
In the previous example on the Reception of Patients, the size 
of the hospital can also be taken into account. For practical 
reasons, hospitals can be grouped into 3 categories (according 
to the size) and the number of patients per category can be 
taken to be proportionnal to relative number of beds per 
category. If these are of 30% for small or mean sized hospitals 
and of 40% for large sized hospitals, then the sharing out of a 
total sample size of 2000, with proportionnal allocation between 
hospital type and equal allocation between communities, is as 
follows: 

Community       A         B          C            D        Tot. 

 
small hosp. 150  150      150   150  600 
 
mean  hosp. 150  150  150   150  600
  
large hosp. 200  200  200   200  800 
 
total  500  500  500   500     2000 

----------------------------------------------------------------
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8.5 Cluster Sampling 

The primary interest of cluster sampling is for investigating a 

population which is highly dispersed. Instead of directly taking 

individuals at random from the whole population, it is first 

divided into mutually exclusive and exhaustive clusters (for 

example: towns and villages). A simple random sample of clusters 

is then extracted and individuals are thereafter taken within 

the selected clusters. 

 

Several methods are available for extracing the individuals in 

the selected clusters. In "ONE STAGE" cluster sampling, all the 

individuals of the cluster are taken into the sample. In "TWO 

STAGE" cluster sampling, individuals are sampled out with the 

help of one of the previous methods (SRS, systematic sampling, 

stratification). More than two stages can be involved. For 

instance, sampling units could be villages at the first stage, 

blocks of houses within the selected villages at the second 

stage, households within the blocks at the third stage. 

For two stage sampling, the number of individuals within each 

cluster can either be fixed, or taken with a "PROBABILITY 

PROPORTIONAL TO SAMPLE SIZE" (PPS). (This is the same as for 

stratified sampling: equal or proportionnal allocation). 

-------------------------------------------------------------- 

Example from Kaamugisha, J., and Feksi, A.T. (1988) “Determining 

the prevalence of epilepsy in the semi-urban population of 

Nakura, Kenya, comparing two independent methods not apparently 

used before in epilepsy studies” Neuroepidemiology 7, 115-121. 

 

See Method I, pp. 116-117. 

• creation of 30 clusters of about 100 households each 

• starting list of all pupils in the first year of primary 

education. Total number of pupils is 3043. Each pupil is 

represented by a number, name and school name 

• 30 pupils are selected by systematic sampling. Sampling 

interval is 3403/30 ≅ 113. First pupil is selected by SRS. 

Second by adding 113 to first pupil’s number, etc... 
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• starting household for each cluster is adjacent to the one of 

selected children. A total of about 99 households are taken in 

each cluster.
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8.6.Specification of sample size 

The number of observations to be collected depends on the aim of 

the study: to provide an estimation of the population value or 

to test a specific hypothesis. 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple Random sampling 

VARIABLE: Qualitative (proportion) 

POPULATION: Infinite 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: 1 

 

Starting from the formula of the confidence interval, and 

supposing that one has some preliminary idea about the value of 

the proportion in the population (Π). Otherwise, to put things 

at worse take Π = .5. 

                                    ______________ 
                                        Π(1-Π) 
                    p ±      zα *  √  -------- 
                                         n 

The precision, d =  half of the width of confidence interval = 

                                             __________ 
                                                Π(1-Π) 
                                        zα *√  -------- 
                                                 n 
and for a given precision, the sample size is: 
 
                  zα2*Π(1-Π)   
            n  = ------------ 
                      d2 
----------------------------------------------------------------
Example: suppose you know the rate of arthritism among women 
aged between 50 and 60 years is around 20 % in a given region. 
How many subjects should you take in order to estimate the rate 
of arthritism with a precision of 2% ? 
 
                (1.96)2*(.2)*(1-.2) 
n     =      ------------------------- =  1537 
                        (.02)2 

----------------------------------------------------------------

for a precision of 10% 
 
                (1.96)2*(.2)*(1-.2) 
n     =      ------------------------- =  61 
                        (.10)2 

---------------------------------------------------------------- 
without any idea of the true proportion 
 
                (1.96)2*(.5) 2 
n     =      ------------------------- =  96 
                        (.10)2 
---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple Random Sampling 

VARIABLE: Qualitative (proportion) 

POPULATION: Finite (size N) 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: 1 

 

Starting from the formula of the confidence interval, 
                                  ___________________ 
                                    N - n      π(1-π) 
    p ±      zα *√ --------- *------- 
                                    N - 1        n 

 

where the expression in bold characters is the "finite 

population correction". 

 
If d is the required PRECISION then:     
 
                                   __________________ 
                  N - n    π(1-π) 
       d   =  zα *√ ---------*------ 
                                     N - 1       n 

and:                    

 
                      N zα2 π(1-π) 
            n = -------------------- 
                   N d2 + zα2 π (1-π) 
 

Notice that (1)for a very large population, this formula becomes 

almost the same as the previous one, for infinite populations 

(proof: divide each term by N); 

(2)sample size is lesser for a finite than for an infinite 

population. 
---------------------------------------------------------------- 
Example: suppose you want to estimate the proportion of smokers 
for the 500 medical doctors working in a hospital, without any 
idea of the true proportion. How many people should you take for 
a precision of 10 % ? 
Taking the largest possible variance, which corresponds to a 
proportion of one half: 
 
 
              500*(1.96)2*(.5)2 
n   =   ----------------------------------  =  about 81  
         500*(.1)2   +   (1.96)2*(.5)2 
 
--------------------------------------------------------------- 

With EPI program (Statcalc/ sample size/ Population Survey)/ 
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   Population Survey or Descriptive Study Using Random (Not 
Cluster) Sampling    
 
 
                       Population Size    :   500 
 
                       Expected Frequency :       50.00 % 
 
                       Worst Acceptable   :       40.00 % 
 
                       Confidence Level       Sample Size 
                       ----------------       ----------- 
                            80 %                     38 
                            90 %                     60 
                            95 %                     81 
                            99 %                    125 
                          99.9 %                    176 
                         99.99 %                    215 
Formula   : Sample Size = n/(1-(n/population)) 
            n = Z*Z(Π(1-Π))/(D*D) 
 

Reference : Kish & Leslie, Survey Sampling, John Wiley & Sons, 

NY/ see Epiinfo manual p.258. 

---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple random sampling 

VARIABLE: qualitative (proportion) 

POPULATION: Infinite 

AIM OF THE STUDY: Test of Hypothesis 

NUMBER OF SAMPLES: 1 

 

Sample size for hypothesis testing: 

The investigator has to define the values of the 3 following 

parameters at the start: 

                  type I error (α) 

                  type II error (ß) and hence the minimal 

deviation from the null hypothesis (Π1 versus Π0) to be detected 

by the test. Usually, type I error is considered to be 4 times 

as serious as type II error (Cohen, J.(1977) "Statistical Power 

Analyses for the Behavioral Sciences" New York: Academic press). 

Hence ß = 4α, and for α=.05, ß=.20 (zß=.84, caution unilateral 

!) 

                  the SD of the population = Π0 (1-Π0). 

With these ingredients in hand, the number of observations is : 
 
 
 
                 _________          _________ 
          [zα √ Π0 (1-Π0)+ zß √ Π1 (1-Π1)]2  
  n =  -------------------------------- 
                       [ Π0-Π1 ]2             
 

where zα corresponds to α in the bilateral Normal table (if two 

tailed test) 

and zß corresponds to ß in the unilateral Normal table (even for 

two tailed test). 
 
 
................................................................ 
Mathematical development: if we take the m value which 
corresponds to the threshold of rejection, we have: 
  
                           p - Π0 
                      zα =-------------- 
                           √Π0 (1-Π0)/n 
 
                           p - Π1 
                      zß =------------- 
                           √Π1 (1-Π1/n 
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Eliminating m by combining these equations gives the above 
formula. 

................................................................ 
 
---------------------------------------------------------------- 
Example: the spontaneous rate of recovery is of .20 for a given 
disease (Π0) and we want to detect a +.10 difference at least 
with type I error equal to .05 and type II error equal to .20. 
How many observations are required? 
 
 
      ( 1.96√(.2)(.8) + 0.84 √(.3)(.7) )2 
  n = (--------------------------------)  = about 137 
      (              .1                ) 
---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple random Sampling 

VARIABLE: Qualitative (Proportion) 

POPULATION: Infinite 

AIM OF THE STUDY: Test of Hypothesis 

NUMBER OF SAMPLES: 2 

 

The size of one of the two samples, the smallest one if the 2 

samples do not have the same size, is: 
 
                ___________       ____________________ 
          [ /zα/ √(r+1)π(1-π) + /zß/ √rπ1(1-π1) + π2(1-π 2) ]2 
  n1 =  -------------------------------------------------    
                         r(π2-π1)2                     
 
 

π stands for (π1 + rπ2)/(r + 1) 
 

This is an approximative formula (for the exact one see Fleiss 

p.44; also in Epiinfo, "cohort or cross-sectional" option and 

equivalently with "unmatched case-control"). r is for taking 

account for unequal sample sizes and is equal to n2/n1. For 

equal sample sizes r=1 (see formula p.14- Table 7 in Lemeshow et 

al., 1990) 

---------------------------------------------------------------- 
Example: In a research on the Reception of Patients from two 
different ethnic communities in Hospitals which sample sizes 
should be taken for assessing the differences in proportions of 
"satisfied or not" with a precision of .1 if one community is 3 
times larger than the other, and assuming that, if there is a 
difference, satisfaction will be 10% higher in the largest 
community  ?  
 
 
             _____________         ____________________ 
     [ 1.96 √ 4(.575)(.425) + .84 √ 3(.5)(.5) +(.6)(.4)]2 
n1= -------------------------------------------------------  
                         3 (.1)2 
 
 
= about 256 
 
 
This is for the smallest community. For the largest n = 256*3 = 
768, and the total is about 1024. (With the exact formula -
Epiinfo- 272 for the smallest sample and total=1088). 

---------------------------------------------------------------- 

EPI-INFO: STATCALC - SAMPLE SIZE & POWER -  
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then either COHORT... or UNMATCHED-CASE CONTROL 

Values to be entered with the above example: 95%, 80%, 3 /1, 

50%, 0, 60% 

Then for calculation and saving: F5/ F4/ F6/ F10 ... 

------------------------------------------------------------ 

 

Unmatched Cohort and Cross-Sectional Studies (Exposed and Nonexposed)       

              Sample Sizes for 50.00 % Disease in Unexposed Group                

 

                             Disease     Risk   Odds         Sample Size 

Conf.    Power   Unex:Exp  in Exposed   Ratio  Ratio    Unexp.   Exposed   Total 

-----    -----   --------  ----------   -----  -----    ------   -------   ----- 

95.00 %  80.00 %    3:1       60.00 %    1.20   1.50       816      272    1,088 

 

90.00 %    "         "                                     651      217      868 

95.00 %    "         "                                     816      272    1,088 

99.00 %    "         "                                   1,197      399    1,596 

99.90 %    "         "                                   1,734      578    2,312 

95.00 %  80.00 %     "                                     816      272    1,088 

  "      90.00 %     "                                   1,077      359    1,436 

  "      95.00 %     "                                   1,320      440    1,760 

  "      99.00 %     "                                   1,845      615    2,460 

  "      80.00 %    1:1                                    407      407      814 

  "        "        2:1                                    612      306      918 

  "        "        3:1                                    816      272    1,088 

  "        "        4:1                                  1,020      255    1,275 

  "        "        5:1                                  1,225      245    1,470 

  "        "        6:1                                  1,428      238    1,666 

 

Formula   : m' = Sq{c(a/2)*Sqrt[(r+1)*PQ]-c(1-b)*Sqrt[r*P1Q1+P2Q2]} 

                 /(r*Sq[P2-P1]) 

            m = .25m'*Sq{1+Sqrt[1+2*(r+1)/(m'r*Abs[P2-P1])]} 

 

Reference : Fleiss, "Statistical Methods for Rates and Proportions", 

            2nd Ed., Wiley,1981, pp. 38-45. 
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SPECIFICATION OF SAMPLE SIZE 

METHOD:Simple Random Sampling 

VARIABLE: Quantitative (mean) 

POPULATION: Infinite 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: 1 

 

Starting from the formula of the confidence interval, with some 

idea about the population variance (σ2): 

 
                  σ 
         m ±    zα * --- 
                     √ n 
 

if d is the PRECISION required, then 

 

    d = zα*σ/√n 

and: 

 
 
                    zα2*σ2  
           n   = ----------- 
                       d2 
 
 
---------------------------------------------------------------- 
Example: suppose you want to estimate the systolic pressure for 
males aged between 18 and 22, with a precision of 10 mm Hg, 
assuming a standard deviation of 15 mm Hg. How many subjects 
should you take ? 
 

 
 
                      (1.96 *15)2 
          n  =   ------------------- = about 9 subjects 
                         (10)2 

---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple random Sampling 

VARIABLE: Quantitative (mean) 

POPULATION: Finite (size = N) 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: 1 

 

 

Starting from the formula of the confidence interval, 
                                  ________________ 
                                    N - n   
    m ±    zα *´ √ --------- σ2/n 
                                    N - 1 

where the expression in bold characters is the "finite 

population correction". 

 

if d is the PRECISION required,then:     

 
                                    ________________ 
                                     N - n   
       d   =  zα * √ --------- σ2/n 
                                     N - 1 

 

and:                     

 
                      N zα2  σ2 
            n = -------------------- 
                   N d2 + zα2 σ2 
 

Notice that for a very large population, this formula becomes 

almost the same as the previous one, for infinite populations 

(Proof: divide each term by N). 
---------------------------------------------------------------- 
Example: suppose you want to estimate the B.M.I. with a 
precision of 2 for children below 10 years of age in a village 
where the corresponding population of children amounts 600, 
supposing a standard deviation of 3 ? 
 
 
                600*(1.96*3)2 
n =--------------------------------- =  about 8 subjects 
              600*(2)2 + (1.96*3)2 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple Random Sampling 

VARIABLE:  Quantitative (mean) 

POPULATION: Infinite 

AIM OF THE STUDY: Test of Hypothesis 

NUMBER OF SAMPLES: 1 

 

 

The investigator has to define the values of the 3 following 

parameters at the start: 

                  type I error (α) 

                  type II error (ß) and hence the minimal 

deviation from the null hypothesis (∂ = µ1 - µ0) to be detected 

by the test 

                  the SD of the population (σ), a value which is 

generally unknown but can be estimated from previous 

investigations or with the help of a pilot study. 

With these ingredients in hand, the number of observations is : 
 

                     [σ(/zα/ + /zß/)]2    
               n =  -------------- 
                         d2 

where zα corresponds to α in the bilateral N table (if two 

tailed test) 

and zß corresponds to ß in the unilateral N table (even for two 

tailed test). 
 
and d = precision required = µ1 - µ2 
................................................................ 
Mathematical development: if we take the m value which 
corresponds to the threshold of rejection, we have: 
  
                           m - µ0 
                      zα =---------- 
                            σ/√n 
 
                           m - µ1 
                      zß =---------- 
                            σ/√n 
 
Eliminating m by combining these equations gives the above 
formula. 
................................................................  
---------------------------------------------------------------- 
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Example: weight of babies. Suppose that in a further study we 
want to detect a difference of +50 g from the present mean (3251 
g) which we take as µ0. Let us take the SD of the previous 
sample (525 g) as estimate for σ, and choose a .05 value both 
for α and ß. 
 
                   ( σ(1.96 + 1.65) )2 
               n = (--------------- )    = 1437 observations  
                   (       50       ) 

For a difference of +20 g, n= about 8980 observations.  

For a difference of 300 g, n = about 40 observations. 

For β = 20%:    n = 864 

---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Simple Random Sampling 

VARIABLE: Quantitative 

POPULATION: Infinite 

AIM OF THE STUDY: Test of Hypothesis 

NUMBER OF SAMPLES: 2 

The size of one of the two samples, the smallest one if the 2 

samples do not have the same size, is: 
 
  
               (r + 1) σ2  (/zα/ + /zß/)2 
  n1 =  ------------------------------------------------    
                      r d2 
 
 
 

This is an approximative formula .r is for taking account for 

unequal sample sizes and is equal to n2/n1, where n2 is the size 

of the largest sample. For equal sample sizes r=1 (see formula 

p.39 in Lemeshow et al., 1990). 

 

---------------------------------------------------------------- 

Example: for σ=15, d=5 mm Hg, α=1%, ß= 4%, r=1 

 

 
  2*(15)2*(2.57+1.75)2 
n1   =    ______________________   =  about 337 
                 52 

---------------------------------------------------------------- 
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 SPECIFICATION OF SAMPLE SIZE - SUMMARY TABLE 
  
    SIMPLE RANDOM SAMPLING 
 
     PROPORTIONS      
 
 
 
________________________________________________________________ 
     Finite Populations 
 
________________________________________________________________ 
 
 Single sample                                                   
                                                                    
                      N zα2 Π(1-Π)                             
  Estimation   n = ---------------------  
                    N d2 + zα2 Π(1-Π)                          
________________________________________________________________ 
 
 
 
 
________________________________________________________________ 
 
     Infinite Populations                              
________________________________________________________________ 
 
 Single Sample                                                   
                                                                    
                    zα2*Π(1-Π)                                   
 Estimation   n = ------------                         
                             d2                                        
________________________________________________________________ 
 Single sample                                                   
                       ________        ________                        
              [/zα/ √Π0(1-Π0) + /zß/ √Π1(1-Π1)]2                     
  Test   n= --------------------------------- 
                         [ Π0-Π1 ]2                              
                                                                    
________________________________________________________________ 
Two Samples                                                     
                         ___________       _____________________ 
            [ /zα/ √(r+1)Π(1-Π) + /zß/ √rΠ1(1-Π1) + Π2(1-

Π2) ]2   
 Test  n1 = ------------------------------------------------ 

                                     r(Π2-Π1)2                      
                                                                    
n1 = size of smallest sample                                        
r  = n2/n1  
________________________________________________________________ 
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 SPECIFICATION OF SAMPLE SIZE - SUMMARY TABLE 
  
    SIMPLE RANDOM SAMPLING 
 
       MEANS    
 
 
 
________________________________________________________________ 
 
   Finite Populations                                    
________________________________________________________________ 
 
 Single sample 
                                                                    
                      N zα2 σ2                                   
  Estimation   n = ------------------ 
                    N d2 + zα2 σ2                                
________________________________________________________________ 
 
 
 
 
 
________________________________________________________________ 
 
   Infinite Populations                              
________________________________________________________________ 
 
 
 Single Sample                                                   
                                                                    
                    zα2*σ2                                        
 Estimation  n  =---------- 
                          d2                                          
                                                                 
________________________________________________________________ 
 Single sample                                                   
                                                                    
                    [σ(/zα/ + /zß/)]2                                  
  Test   n =  -------------------- 
                         d2                                      
                                                                    
________________________________________________________________ 
 
 Two Samples                                                     
                                                                    
                 (r + 1) σ2  (/zα/  + /zß/)2                         
 Test  n1 = ------------------------------- 

                        rd2                                    
                                                                    
n1 = size of smallest sample                                        
r  = n2/n1                                                       
________________________________________________________________ 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Systematic sampling 

VARIABLE: Qualitative or Quantitative 

POPULATION: Finite or Infinite 

AIM OF THE STUDY: Estimation or Test of Hypothesis 

NUMBER OF SAMPLES: 1 or 2 

 

Provided that the units of the population are ordered at random 

in the list from which systematic sampling was taken, then 

estimations for systematic sample is equivalent to those for 

SRS. Practically: do not assign a number to each item, otherwise 

there is no advantage versus SRS, but mix them first and then 

extract at random (Example: students mixed in the classroom). 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Stratified sampling 

VARIABLE: Qualitative (proportion) 

POPULATION: Infinite 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: strata 

 

Confidence interval: 

                            _______________ 
                                   σs2 
                    p ± zα √ ∑Ps *____ 
                                   n 
 

where Ps is the probability for an item in the population to 

belong to stratum s. 

 
 

                                        σs2 

                    n
 =   zα

2
  ∑ Ps * ____ 

                                        d
2
 

---------------------------------------------------------------- 
Example: suppose that a preliminary survey shows that the rate 
of arthritism among women aged between 50 and 60 depends on the 
region. The data are as follows: 
 
  Region  Population rate of arthritism 
   A  65 %   around 20% 
   B  35 %   around  5% 
 
How many subjects should be taken in order to estimate the rate 
of arthritism with a 2% precision? 
 
 
     (1.96)2 [(.65)(.2)(.8)+(.35)(.05)(.95)] 
 n  =     
----------------------------------------------------------- 
                                 (.02)2 
 
 
   = about 1158 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Stratified Sampling; proportional allocation 

VARIABLE: Qualitative (proportion) 

POPULATION: Finite (size N, strata of size Ns) 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: strata 

 

Confidence interval: 

                        _____________________________ 
                          (N-n)     Σ (ns/n) Πs(1-Πs) 
             p ±    zα √   --- *    ----------------- 
                            N             n 
 
where Πs(1-Πs) is the variance per stratum. 
 
Sample size: 
 
                      N zα2 Σ (Ns/N) Πs(1-Πs) 
 n   =          ------------------------------ 
                      zα2 Σ (Ns/N) Πs(1-Πs) + Nd2  
                                                   

                                                   

---------------------------------------------------------------- 
Example: suppose that a preliminary survey shows that the rate 
of arthritism among women aged between 50 and 60 depends on the 
region. The data are as follows: 
 
  Region  Population  rate of arthritism 
   A  55000   around 20% 
   B  30000   around  5% 
 
How many subjects should be taken in order to estimate the rate 
of arthritism with a 2% precision? 
 
 
 
    85000(1.96)2 [(55/85)(.2)(.8)+(30/85)(.05)(.95)] 
 n  =  ----------------------------------------------------- 
     (1.96)2 [(55/85)(.2)(.8)+(30/85)(.05)(.95)] + 85000(.02)2 
 
 
 
 
   = about 1140 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Stratified Sampling; proportional allocation 

VARIABLE: Quantitative (mean) 

POPULATION: Finite (size N, strata of size Ns) 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: strata 

 

Confidence interval: 
                                ______________________ 
                                  N-n     Σ (ns/n) σs2 
                    m ±     zα √ ---     ----------------- 
                                   N             n 
 
where σs2 is the variance per stratum. 
 
Sample size: 
 
                      N zα2 Σ (ns/n) σs2 
 n   =          ------------------------------ 
                      zα2 Σ (ns/n) σ2 + Nd2  
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Stratified Sampling; optimal allocation 

VARIABLE: Quantitative (mean) 

POPULATION: Finite (size N, strata of size Ns) 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: strata 

 

 

"OPTIMAL ALLOCATION" is the sharing out of subjects in strata 

which will give the highest precision, for a given sample size, 

when the aim of the study is to make a global estimation for all 

the strata, and not to test differences between strata. If the 

variances of the strata are equal, the optimal allocation 

corresponds to PPS. Otherwise, the more general formula is as 

follows: 

 

 
                        n Ns σs 
   ns  = ---------- 

                       Σ Ns Ís 
 

Taking account of sampling cost per elementary unit differences 

between strata: if Cs is the cost per stratum, the global cost 

is: 

 
  C= Σns Cs 
 
and , for a given sample size: 
 
                           n Ns σs/√Cs 
    ns = -------------- 

       Σ Ns σs/√Cs 
 
For a fixed total cost C: 
 
                           C Ns σs/√Cs 
    ns = -------------- 

       Σ Ns σs/√Cs 

---------------------------------------------------------------- 
Example: suppose measurements of BMI are taken in 2 strata, one 
for people living in town, the other for people in the 
countryside. 60 % of the population live in the countryside and 
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the cost per unit is 250 BF in town against 500 BF outside. 
Which sample size should be taken for a global cost of 50000 BF? 
 
 
                     50000(.6/√500) 
nscountryside=   ----------------------------------  = about 68 

                   (.6/√500) +  (.4/√250) 
 
 
 
                     50000(.4/√250) 
nstown =  ----------------------------------  = about 64 

                   (.6/√500) +  (.4/√250) 
 
 
 
Total cost= 68*500 + 64*250 = 34000 + 16000 = 50000 
---------------------------------------------------------------- 
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SPECIFICATION OF SAMPLE SIZE 

METHOD: Cluster Sampling; fixed or proportional allocation 

VARIABLE: Quantitative (mean) 

POPULATION: infinite 

AIM OF THE STUDY: Estimation 

NUMBER OF SAMPLES: clusters 

 

sample size for cluster sampling  =  sample size for SRS * design effect 
 
  
               variance with clustering 
design effect =  
                          variance without clustering 
 
----------------------------------------------------------------------------------- 
Epi-Info: how to obtain the design effect in a pilot study which can then after be used for 
calculating sample size in further studies. 
 
Example: “Expanded  Program on Immunization” (EPI : Lemshow & Robinson (1985) see Epi-
Info manual, pp. 135...) 
 
• data are in epi1.rec file (vaccinal coverage, 30 clusters, 7 subjects per cluster, sample size 

=210) 
 
• run CSAMPLE with epirec1.rec, main variable VAC ...- analysis TABLES 
 
• see ouput SE = 3.034 % =  √p(1-p)/n  = √0.7381*0.2619/210 
this is the within-cluster SE calculated with the Binomial formula. Logic: if simple random 

sample (SRS) then Binomial distribution. 
 
• run CSAMPLE with epirec1.rec, main variable VAC - psu CLUSTER- analysis TABLES 
• see ouput SE = 4.599 % 
this is the observed between-cluster SE. Logic: if there was no cluster effect then between-cluster 

SE should be the same as within-cluster SE. 
 
• design effect = (4.599/3.034)²  =  2.298 
 
• conclusion: sample size for cluster sampling of vaccinal coverage should be about 2.3 times 

larger than sample size for SRS, for obtaining estimates the same confidence and precision. 
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Chapter 9. Generalized Linear Model  
 
 

 Generalized Linear model 
 Risk Coefficients 
 Contrasts 
 Stratification 
 Bias (confounder) & Interaction (effect modification) 
 Multivariate model 
 Guidelines for the choice of a test 
 Strategies for model building 
 TABLES
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9.1 Confounding, Effect Modification and Stratification. 
 
Taking several predictors allows to cope with BIAS (confounding) and 
INTERACTION (effect modification). 
 
BIAS means that effect of a predictor is due to its relationship with another predictor. 
The effect will then disappear with stratification of the other predictor. 
INTERACTION means that the effect is not constant for the different strata of the 
other predictor. 
 
 
 variable X1 included in the model                                   Y  dependent variable 
                                                  apparent relationship 
 
     effective relationship                                               effective   relationship 
 
                                             
                                            other variable X2 not included in the model 
 
 
The effect of  a single predictor (X 1) on a dependent variable (Y) can be 
partially or totally due to the relationship between X 1 and one or several other 
possible predictors (X 2, X 3 ... X k). When this is the case,  other possible 
predictors are then confounding variables or confounders. One of the 
purposes of multivariate statistics is to take account of possible confounders. 
Consider the following examples with three variables.  
 
 
 
 
Examples of possible confounders. 
 
(I) Does systolic pressure depend only on  age or also on  BMI which covaries 
with age? 
Does the effect of age remain when BMI is taken into account ? Taking account 
of BMI might reduce or even falsify the apparent effect of age. BMI is a possible 
confounder. 
 
(II) Is weight at birth related to ethnic group ?  
We should take account of social class before drawing conclusions on weight 
differences between ethnic samples. If the proportions of babies from different 
social classes are not similar in the samples then we might attribute to ethnic 
differences what is in fact caused by social class differences. This latter factor 
would the be a confounder.  
 
(III) Height at birth might also be a confounder for the ethnic - weight relationship. 
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(IV) Is perinatal decease related to skull perimeter?  Or does it in fact depend on 
a related variable, weight at birth. 
 
(V) Is decease rate lower with drug vs. placebo?  Or are subjects which were 
given the drug in better initial health than subjects in the “placebo group”.  
 
(VI) Age might also be a confounder for the drug-decease rate relationship 
 
 
In the simplest case (3 variables), stratification is describing the relationship between 

two variables for the different levels of a third variable. We are then “controlling” 
the possible confounding effect of the third variable. 

 
Example (V) with proportions: effect of drug vs. placebo on recovery is described for 

each initial health condition. (SPSS command: crosstabs) 
Example (II) with means: effect of ethnic group on weight at birth is described for 

each social class. (SPSS command: means) 
 
If  there is confounding (bias)then stratified description will reveal a weakening (or a 

strengthening) of the effect for each strata. For example (V) effect of drug will be 
weaker (or stronger) for each initial health condition taken separately. HINT: 
compare before / after stratifying. 

 
If  there is effect modification (interaction) then stratified description will reveal a 

difference in the strength of the effect between strata. For example (V) drug will 
have a larger effect for subjects in relatively good initial health condition than for 
those in bad initial condition. HINT: compare between strata.
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9.2 Generalized Linear Model with a single DF 
 
A linear equation can be used for representing any relationship between two variables, 

either categorical or quantitative. This is the Generalized Linear Model  (GLM). 
GLM is very simple when the predictor (X) only has one degree of freedom 
(DF=1), that is for a single quantitative predictor or a binary categorical predictor. 
The GLM is then simply a way for representing differences between means or 
proportions with a linear equation, already used before for representing regression 
lines. 

 
 
 
 
 
 
The  coefficient is the “constant”.   
For linear regression,  is the mean of the y values when x values are centered on the 

mean : y’ = mean y  +  slope*(x –mean x) 
For logistic regression, just the same as linear regression if x is quantitative: 
 is the mean of the logit y values when x values are centered on the mean. 
If x is categorical,  is the mean of the logit y values if the categories are coded as 

deviation contrasts. 
For ANOVA, just the same as logistic regression with categorical x:  is the mean of 

y values if the categories are coded as deviation contrasts. 
  
The  coefficient is a slope, or just the same, a contrast. 
The X values are either genuinely quantitative (e.g. weight in kg) or dummy (binary 

categorical: e.g. sex coded as 0, 1). 
Y’ represents predicted values. It stands for individual values in a regression model 

(Linear or Logistic). Then there will usually be at least some difference between 
expected (Y’) and observed (Y) values even if the contrast is highly significant. 
However when Y’ stands for a mean there will be no difference with the observed 
value if the contrast is significant.   

 
 
 
Consider the following examples for MEANS:  
 
1) equation is trivial (predicted means are the same as observed means) if all the 

contrasts are significant. Consider the following examples with only one contrast 
(df=1). 

 
Relationship between weight at birth and sex, with female coded 0 and male coded 1, 

deviation first contrasts (and female coded 0, male coded 1): 
Y’ = general mean + (mean category – general mean) * X 
Predicted mean male = general mean + (mean male – general mean) * 1 
Predicted mean female = general mean + (mean male – general mean) *(- 1) 

         
         Y’ =  + * X 
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An example with simple first contrast: 
Y’ = general mean + (mean category - mean weight female) * X 
Predicted mean weight male = 
grand mean + (mean weight male - mean weight female) * 0.5 
Predicted mean weight female  =  
grand mean + (mean weight male - mean weight female) * (-0.5) 
 
2) equation gives predicted values different from observed values if at least one 

contrast is NS. Consider the following case with only one contrast (df=1), 
supposing that weight difference between males and females is NS. 

 
predicted mean weight female  =  grand mean  
 
 
predicted mean weight male  =  grand mean 
 
 
 
As we can see the effect of category difference on a mean or a proportion can be 

represented by a slope provide that a numerical value is assigned to each category.  
This is only possible for binary (dummy) categorical variables (see Chapter 2: 
equal interval requirement). Again we see the interest of dummy variables. We 
already saw that variance calculation makes sense with dummy variables. We now 
see that their effect on other variables can be quantified by slopes.  

Interpretation of the slope (contrast) depends on the units used for describing the 
variables. This is evident not only for a quantitative predictors (slope is multiplied 
by 10 if skull perimeter is measured in cm rather than in mm) but also for 
categorical ones.  

 
The magnitude of the slope will for instance be divided by 2 if  male-female contrast 

is coded -1/+1 instead of 0/1. Notice that the coding will not depend on the original 
units but on the contrast type. Thus with deviation contrasts, the coding is –1/+1 
and the slope is for half the increment between categories (for 1 unit increase, 
whereas the categories are 2 units apart). Then: OR = e2. For indicator or simple 
contrasts: OR = e. 

 
The sign of the slope (contrast) will change from + to -  if male-female contrast is 

coded 1/0 instead of 0/1. If two categorical variables are coded differently 
magnitude or direction of their effects might be judged according to different 
standards if we do not take care. 
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variable types Y   X 
quantitative - 
quantitative 

values of 
quantitative 
dependent variable 
(in kg, years...) 

intercept 
 

slope of linear 
regression line 
 

values of quantitative 
predictor (in kg, years...)

quantitative - 
categorical  
 

logit of proportion 
in a category of the 
dependent variable

intercept 
 

slope of logistic 
regression line 

values of quantitative 
predictor (in kg, years...)

categorical - 
quantitative 
 

values of 
quantitative 
dependent variable 
(in kg, years...) 

global mean contrast between 
 means 
 

numerical values 
assigned to predictor’s 
categories 

categorical - 
categorical 
 
 

logit of proportion 
in a category of the 
dependent variable

global proportion 
 

contrast between  logits 
of  proportions 
 

numerical 
values 
assigned to predictor’s 
categories 
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Risk Coefficients: which one and when? 
 

 OR 
 

RR 

 
Basic reason for using 

does not depend on 
prevalence 

 
 invariant 

 

easier to understand & 
explain 

 

 
Drawback 

very abstract depends on prevalence 
 

  if prevalence in the sample 
is arbitrary, sample RR does not 

represent population RR  
 

 
Underlying 

mathematical function 
 

Logistic function Exponential function 

 
Linear transform 

 

Logit Log 
 

 
Examples of 
application 

 

Case-control studies 
Cohort studies 

 
Cohort studies 

 

 
Approximation 

OR  RR  
if prevalence < 10% 
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9.3 Generalized Linear Model with several DFs per predictor 
and several predictors. 

 
 
 
 
 
 
 
 when a predictor has several DFs there is one slope (contrast) per DF. 
Examples: ANOVA for means in 3 samples (e.g. CBF- neglect), 2 slopes. Logistic 
Regression for proportions in 4 samples (e.g; bloodgoup- throembolism), 3 slopes. 
 
 effects of different predictors  can be represented into the same model. Each 
predictor is then represented by a number of slopes (contrasts) corresponding to its 
DF. 
In the examples above:  
(I) effect of age and BMI on systolic pressure; one slope for each of the 2 quantitative 
predictors (Multiple Linear Regression);  
(II) effect of ethnic group (say 4 categories) and social class (say 5 categories) on 
weight at birth; 3 slopes for ethnic group, 4 slopes for social class (ANOVA for 
means); 
(III) effect ethnic group (say 4 categories) and height on weight at birth; 3 slopes for 
ethnic group, 1 slope for height (Analysis of Covariance); 
(IV) effect of skull perimeter and weight at birth on decease rate; 1 slope for skull per. 
1 for weight (Multiple Logistic Regression); 
(V) effect of drug and initial health condition on decease rate; 1 slope for drug, 1 for 
health condition (Multiple Logistic Regression); 
(VI) effect of drug and age on decease rate; 1 slope for drug, 1 for age (Multiple 
Logistic Regression). 
 
 
 
 an INTERACTION is introduced as the product of two (or more) predictors (e.g. 

X1* X2)  in the Multivariate Model and represented with a specific slope (e.g. 3). 
 
                         Y =  + 1* X1+  2* X2+  3* X1* X2 
 
Just as for main effects, interactions are represented by as many slopes (contrasts) as 
there are Dfs. 
 
Example (II): effect of ethnic group (say 4 categories) and social class (say 5 
categories) on weight at birth; 3 slopes for ethnic group, 4 slopes for social class plus 
12 slopes for in the 4*3 DF interaction (ANOVA for means); 
 
 

Y =  + 1* X1+ 2* X2+ 3* X3 ... 
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 NUMBER OF SLOPES for a given predictor depends on the kind of 
variables  
 
 for a QUANTITATIVE PREDICTOR:  only one slope 
 
Y’ = my + b*(X - mx)      where  b is the slope 
 
example: b represents difference in mm Hg bloodpressure for 1 year of 
age  increase  
 
 for a CATEGORICAL PREDICTOR AND A QUANTITATIVE DEPENDENT VARIABLE:  
as many slopes as degrees of freedom (DF = number of categories-1) 
 
Y’ = my + b1*X1  + b2*X2 +  b3*X3 ... where b1  b2   b3 are slopes  
 
example: b1 = m1 - my ; b2 = m2 - my     ; b3 = m3 - my 
  each category has a specific COEFFICIENT for each x variable 
 
 
 
  relationship between two CATEGORICAL VARIABLES:  as many slopes 
as degrees of freedom 
 

logit (Y’) = m logit(y) + b1*X1  + b2*X2 +  b3*X3 ... where b1  b2   b3 are 
slopes  
 
      and e b1  

 ..... are Odds Ratios 
 

example: b1 = logit(p1) - m logit(y) ; b2 = logit(p2) - m logit(y)      .... 
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9.4 Generalized Linear Model with dependent variables with 
more than 1 DF 
 
Several quantitative dependent variables. The relationship can be tested with a 
multivariate ANOVA model. (Multivariate ANOVA in SPSS). 
 
Categorical dependent variable: more than 2 categories. The relationship can be tested 
with a logistic model. But this is not available in SPSS.  
Remember we can also use a Pearson Chi-square with DF = (L-1)*(C-1). 
 
 
9.5 Multivariate statistical tests 
 
The tests for GLM are subdivided into two broad categories.  
 
When dependent variable is quantitative all methods are instances of ANOVA. 
 
When dependent variable is categorical all methods are instances of 
LOGISTIC REGRESSION. 
 
             DEPENDENT 
                    VARIABLE 
 
INDEPENDENT 
VARIABLES 

 
 
         quantitative  

 
 
              categorical  
 

 
all quantitative 

 
ANOVA for linear regression 

 
example (I) 

 

 
logistic regression 

 
example (IV) 

 
 
all categorical  
 

 
ANOVA with several factors 

 
example (II) 

 
 

 
logistic regression 

 
example (V) 

 

 
quantitative and 
categorical 

 
Analysis  of Covariance 

(ANCOVA) 
 

example (III) 
 
 

 
logistic regression 

 
example (VI) 
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 Probability distributions 
 
DEPENDENT 
VARIABLE  

QUANTITATIVE CATEGORICAL  COUNT  

 
 
 
DF =1 

 
 

Student’s t (df) 
 

t² (df)  = F (1, df) 
 

DF = 1 
df = n-2 

 
 

Normal z 
 

z² = Pearson ² (1) 
 

DF = 1 

Binomial 
 

if all Ei 5 

 
 

Normal z 
 

z² = Pearson ² 
(1) 

 
DF = 1 

Poisson 
 

if all Ei 5 

 
DF  1 

 
 

Fisher F (DF, df) 
 

( t²  
 

DF =  k-1 
df = n-k 

 

 
 

Pearson ² (DF) 
 

( z²  
 

DF= (L-1)*(C-1) 
 

 
 

if (80%) Ei 5 

 
 

Pearson ² 
(DF) 

 
( z²  

 
DF= (L-1)*(C-

1) 
 

 
 

if (80%) Ei 5 

 



                                                                                         Willy SERNICLAES - Public Health School - ULB 
 

 

150

INDEPENDENT- 
DEPENDENT 
VARIABLE TYPE 

quantitative -  
quantitative 

categorical -  
quantitative 

quantitative -  
categorical 

categorical -  
categorical 

MODEL linear regression contrasts between means logistic regression contrasts between 
proportions 

NULL HYPOTHESIS  
FOR DF=1 

 
population R = 0  

 
population contrast = 0 

 
population OR = 1 

 
population OR = 1 

SAMPLING 
DISTRIBUTION  
FOR  DF = 1 

 
Student’s t 

 
Student’s t 

 
Log Likelihood ² 

Pearson ² 
or 

Log Likelihood ² 
 
TESTS FOR  DF = 1 
 

R 
 

(1-R²)/(n-2) 

m1 - m2 
 

SE 

 
-2 ln (L0/L1) 

 (Oi-Ei)²/Ei 
or 

ln (L1/L0) 
NULL HYPOTHESIS  
FOR DF   1     

population  
multiple R = 0  

all population contrasts = 
0 

all population OR = 1 all population OR = 1 

SAMPLING 
DISTRIBUTION  
FOR  DF  1 

 
Fisher F  

 
Fisher F 

 
Log Likelihood ² 

Pearson ² 
or 

Log Likelihood ² 
 
TESTS FOR  DF   1 

R² 
 

 (1-R²)/(n-k) 

s²m 

 
s² 

 
-2 ln (L0/L1) 

 (Oi-Ei)²/Ei 
or 

ln (L1/L0) 
APPLICATION 
CONDITIONS 

Linear relationship 
Unimodal distributions 

Equal dispersion 

Unimodal distributions 
Equal dispersion 

Logistic relationship 
 

(80% of) Ei  5  
or 

Logistic relationship 
NON- PARAMETRIC 
TESTS 

Kendall rank coefficient  
(=  coefficient) 

Kruskal-Wallis 
test 

Kendall rank coefficient  
(=  coefficient) 

Fisher exact probability test 
(only for DF=1) 
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9.6 Strategies for model building 
 
Different strategies can be taken for building a model. The following strategy is fairly 
simple and should also be fairly reliable. 
 
 
 
1) univariate selection:  X variables which are significant not too far away from 
significance for predicting Y in univariate tests will be kept in the multivariate 
starting model 
 
2) selection of non-redundant variables: only one among different redundant 
predictors will be kept in the multivariate starting model (e.g. if there are several 
variables related to mother’s childbirth history , such as gestity, parity, nber. living 
children, only the most significant will be kept). 
 
3) starting model without interaction terms: only main effects, without interactions, 
are entered in the starting model. 
 
4) forward selection of variables in the starting model. 
 
5) intermediate model with 2-way interactions: This model will contain all the 
predictors selected in the previous stage plus two-way interactions. 
 
6) forward selection of variables and interactions in the intermediate model. 
 
Procedure stops here if individual variables entering into a selected interaction are 
also selected  (e.g. X1*X3 interaction  selected and X1, X3 variables also selected). 
The model obtained is the final model. 
 
7) otherwise if there are significant interactions without significant component 
variables the latter are also entered  (e.g. as the X1*X3 interaction is significant the 
X1, X3 variables are entered ). This is application of the “Hierarchy principle” which 
says that interaction should not be taken into account if main effect is not in the 
model.  
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Strategy for model building with logistic regression 
 
 
STAGE 1 
 
Test the effect of the variables without interaction term. 
Method: stepwise (“forward conditional” in SPSS; option: “at last step”). 
Contrast: indicator (first). 
 
Decision:  
 put all the significant variables (that is those selected) into the model: still 

ADDITIVE model at this stage. 
 If only one variable is significant, stop here: ADDITIVE model with a single 

variable. 
 If more than one variable is significant go to stage 2. 
 
STAGE 2 
 
Test the effect of the significant variables and of their interaction(s). 
Method: stepwise (“forward conditional” in SPSS; option: “at last step”). 
Contrast: indicator (first). 
 
Decision:  
 put all significant interactions (that is those selected) into the model. 
 
 Also put all the variables entering into these interactions into the model 

(even the non significant variables provided that they have a significant 
interaction with another variable). 

 
 If significant interaction(s): opt for the INTERACTIVE model. 
 

 Calculate the OR per stratum with the stratified chi-squares 
(Crosstabs in SPSS). 

 Obtain the significance levels for the variables with another contrast 
type, different from indicator (e.g. simple), because these 
significance levels are not calculated independently of  the 
significance level of the interaction with indicator contrast. (Why not 
choosing another contrast at the very start then: because the 
relationship with individual strata OR is easier to see manually with 
indicator; calculations are more complex with other contrast types1). 

 
 If no significant interaction(s): opt for the ADDITIVE model. 
 

 Take a global OR for each variable (given by output of  STAGE 1). 

                                            
1 Note that this is essentially for pedagogical purposes. In practice, a procedure based 
on simple contrasts would be quicker as it directly provides the significance levels for 
the variables with (or without) interaction. 
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 Significance levels are those obtained in stage 1 (they do not 
depend on contrast type when there are no interactions into the 
model).  
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Normal distribution.  Probability aera above the Z value.  
Z first decimal on line header; second decimal on column header. (NDIST formula in Excel) 
 
Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0 0.500 0.496 0.492 0.488 0.484 0.480 0.476 0.472 0.468 0.464 
0.1 0.460 0.456 0.452 0.448 0.444 0.440 0.436 0.433 0.429 0.425 
0.2 0.421 0.417 0.413 0.409 0.405 0.401 0.397 0.394 0.390 0.386 
0.3 0.382 0.378 0.374 0.371 0.367 0.363 0.359 0.356 0.352 0.348 
0.4 0.345 0.341 0.337 0.334 0.330 0.326 0.323 0.319 0.316 0.312 
0.5 0.309 0.305 0.302 0.298 0.295 0.291 0.288 0.284 0.281 0.278 
0.6 0.274 0.271 0.268 0.264 0.261 0.258 0.255 0.251 0.248 0.245 
0.7 0.242 0.239 0.236 0.233 0.230 0.227 0.224 0.221 0.218 0.215 
0.8 0.212 0.209 0.206 0.203 0.200 0.198 0.195 0.192 0.189 0.187 
0.9 0.184 0.181 0.179 0.176 0.174 0.171 0.169 0.166 0.164 0.161 

1 0.159 0.156 0.154 0.152 0.149 0.147 0.145 0.142 0.140 0.138 
1.1 0.136 0.133 0.131 0.129 0.127 0.125 0.123 0.121 0.119 0.117 
1.2 0.115 0.113 0.111 0.109 0.107 0.106 0.104 0.102 0.100 0.099 
1.3 0.097 0.095 0.093 0.092 0.090 0.089 0.087 0.085 0.084 0.082 
1.4 0.081 0.079 0.078 0.076 0.075 0.074 0.072 0.071 0.069 0.068 
1.5 0.067 0.066 0.064 0.063 0.062 0.061 0.059 0.058 0.057 0.056 
1.6 0.055 0.054 0.053 0.052 0.051 0.049 0.048 0.047 0.046 0.046 
1.7 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037 
1.8 0.036 0.035 0.034 0.034 0.033 0.032 0.031 0.031 0.030 0.029 
1.9 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.024 0.024 0.023 

2 0.023 0.022 0.022 0.021 0.021 0.020 0.020 0.019 0.019 0.018 
2.1 0.018 0.017 0.017 0.017 0.016 0.016 0.015 0.015 0.015 0.014 
2.2 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 
2.3 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 
2.4 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006 
2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 
2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 
2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 
2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 

3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
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Normal distribution. Double-tailed probability aera (2*NORMDIST formula in Excel) 
Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 1.000 0.992 0.984 0.976 0.968 0.960 0.952 0.944 0.936 0.928
0.1 0.920 0.912 0.904 0.897 0.889 0.881 0.873 0.865 0.857 0.849
0.2 0.841 0.834 0.826 0.818 0.810 0.803 0.795 0.787 0.779 0.772
0.3 0.764 0.757 0.749 0.741 0.734 0.726 0.719 0.711 0.704 0.697
0.4 0.689 0.682 0.674 0.667 0.660 0.653 0.646 0.638 0.631 0.624
0.5 0.617 0.610 0.603 0.596 0.589 0.582 0.575 0.569 0.562 0.555
0.6 0.549 0.542 0.535 0.529 0.522 0.516 0.509 0.503 0.497 0.490
0.7 0.484 0.478 0.472 0.465 0.459 0.453 0.447 0.441 0.435 0.430
0.8 0.424 0.418 0.412 0.407 0.401 0.395 0.390 0.384 0.379 0.373
0.9 0.368 0.363 0.358 0.352 0.347 0.342 0.337 0.332 0.327 0.322

1 0.317 0.312 0.308 0.303 0.298 0.294 0.289 0.285 0.280 0.276
1.1 0.271 0.267 0.263 0.258 0.254 0.250 0.246 0.242 0.238 0.234
1.2 0.230 0.226 0.222 0.219 0.215 0.211 0.208 0.204 0.201 0.197
1.3 0.194 0.190 0.187 0.184 0.180 0.177 0.174 0.171 0.168 0.165
1.4 0.162 0.159 0.156 0.153 0.150 0.147 0.144 0.142 0.139 0.136
1.5 0.134 0.131 0.129 0.126 0.124 0.121 0.119 0.116 0.114 0.112
1.6 0.110 0.107 0.105 0.103 0.101 0.099 0.097 0.095 0.093 0.091
1.7 0.089 0.087 0.085 0.084 0.082 0.080 0.078 0.077 0.075 0.073
1.8 0.072 0.070 0.069 0.067 0.066 0.064 0.063 0.061 0.060 0.059
1.9 0.057 0.056 0.055 0.054 0.052 0.051 0.050 0.049 0.048 0.047

2 0.046 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037
2.1 0.036 0.035 0.034 0.033 0.032 0.032 0.031 0.030 0.029 0.029
2.2 0.028 0.027 0.026 0.026 0.025 0.024 0.024 0.023 0.023 0.022
2.3 0.021 0.021 0.020 0.020 0.019 0.019 0.018 0.018 0.017 0.017
2.4 0.016 0.016 0.016 0.015 0.015 0.014 0.014 0.014 0.013 0.013
2.5 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010
2.6 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.007 0.007
2.7 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005
2.8 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004
2.9 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003

3 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002
3.1 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001
3.2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
3.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
3.4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
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Student’s t distribution. Double-tailed probability aera: to be above the t value or below the –t value 
t first decimal on line header; DF on column header. (TINV formula in Excel) 
 
t values df 5 10 15 20 25 30 40 50 60 100 5000

0.2 1.48 1.37 1.34 1.33 1.32 1.31 1.30 1.30 1.30 1.29 1.28
0.1 2.02 1.81 1.75 1.72 1.71 1.70 1.68 1.68 1.67 1.66 1.65

0.05 2.57 2.23 2.13 2.09 2.06 2.04 2.02 2.01 2.00 1.98 1.96
0.01 4.03 3.17 2.95 2.85 2.79 2.75 2.70 2.68 2.66 2.63 2.58

0.001 6.87 4.59 4.07 3.85 3.73 3.65 3.55 3.50 3.46 3.39 3.29
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Chi-square distribution. Probability aera: to be above the X value. 
X first decimal on line header; DF on column header. (CHIINV formula in Excel) 
 
X² values   
p df 1 10 20 40 60 80 120

0.2 1.64 13.44 25.04 47.27 68.97 90.41 132.81
0.1 2.71 15.99 28.41 51.81 74.40 96.58 140.23

0.05 3.84 18.31 31.41 55.76 79.08 101.88 146.57
0.01 6.63 23.21 37.57 63.69 88.38 112.33 158.95

0.001 10.83 29.59 45.31 73.40 99.61 124.84 173.62
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F distribution. Probability to be above the F value. 
P on line header; DF on column header. (FINV formula in Excel) 
 
F values df1 1 1 1 1 1 1 1 1
p df2 1 10 20 40 60 80 120 5000

0.2 9.47 1.88 1.76 1.70 1.68 1.67 1.66 1.64
0.1 39.86 3.29 2.97 2.84 2.79 2.77 2.75 2.71

0.05 161.45 4.96 4.35 4.08 4.00 3.96 3.92 3.84
0.01 4052.18 10.04 8.10 7.31 7.08 6.96 6.85 6.64

0.001 405311.58 21.04 14.82 12.61 11.97 11.67 11.38 10.84
  

F values df1 10 10 10 10 10 df1 20 20 20 20
p df2 20 40 60 80 120 df2 40 60 80 120

0.2 1.53 1.44 1.41 1.39 1.37 0.2 1.36 1.32 1.31 1.29
0.1 1.94 1.76 1.71 1.68 1.65 0.1 1.61 1.54 1.51 1.48

0.05 2.35 2.08 1.99 1.95 1.91 0.05 1.84 1.75 1.70 1.66
0.01 3.37 2.80 2.63 2.55 2.47 0.01 2.37 2.20 2.12 2.03

0.001 5.08 3.87 3.54 3.39 3.24 0.001 3.15 2.83 2.68 2.53
  

F values df1 40 40 40 df1 60 60 df1 80
p df2 60 80 120 df2 80 120 df2 120

0.2 1.27 1.25 1.23 0.2 1.22 1.20 0.2 1.18
0.1 1.44 1.40 1.37 0.1 1.36 1.32 0.1 1.29

0.05 1.59 1.54 1.50 0.05 1.48 1.43 0.05 1.39
0.01 1.94 1.85 1.76 0.01 1.75 1.66 0.01 1.60

0.001 2.41 2.26 2.11 0.001 2.10 1.95 0.001 1.86
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Chapter 10 

Multifactorial ANOVA 

 
The incorporation of several factors in 
the ANOVA allows to solve the 
following problems: 
 
 The confounder problem : as 
we have already seen the presence of a 
statistical relationship between any two 
variables must be interpreted with care. 
When the ANOVA only includes a 
single factor, the effect of the factor 
can due to the confounding effect of a 
“hidden” factor, which is not included 
in the statistical analysis. Confounding 
can only occur if the two factors are 
related, i.e. if relative frequencies of 
factor A categories depend on factor 
B categories (non-orthogonal design). 
Confounding is not possible when 
relative frequencies of factor A are 
constant across factor B categories 
(orthogonal design).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 The interaction problem: there 
is an interaction when  effect of a 
given factor on the dependent 
variable (not its frequency) is related 
to the other factor. Interaction means 
that the effect of  factor A depends on 
the value of factor B. Interaction is 
reflected in non- parallelism: contrast 
values (slopes) of factor A change as a 
function of factor B.  

. 
 
 
 
Orthogonal design: confounding is not 
possible 
 
 A1 A2 total 
B1 p1 p2 1 
B2 p1 p2 1 
_______________________________ 
Non-orthogonal design: confounding is 
possible 
 
 A1 A2 total 
B1 p11 p12 1 
B2 p21 p22 1 
 
p11 ≠ p21 and p12 ≠ p22  
_______________________________ 
 
Example of confounder: effect of A in 
single factor ANOVA is larger than in 
two-factor ANOVA because larger 
proportion of B1 category in A2 vs A1. 
 
Y                                               B1 
 
                                                B2 
 
       A1             A2                  A1           A2 
 
 
 
 
 
Example of interaction: effect of B is 
smaller for A2 category.  
 
Y                                          
 
                                                                         B1 
                                             
                                                                          B2 
 
 
          A1             A2                  A1           A2 
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• tests for two-factor ANOVA 
 
Effect of each factor is tested 
separately by F-test, with DF 
calculated in the same way as in one-
factor ANOVA. 
 
Effect of interaction is also tested 
separately with DF equal to the product 
of factor’s DFs.  
 
Tests for contrasts with Student’s t-
tests. For each factor and interaction 
there are as many contrasts as DF.  
 
Denominator of F-tests is the within-
cells MS  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
several H0 :  

for testing factor A: all contrasts 

for factor A =0 

for testing factor B: all contrasts 

for factor B =0 

for testing the interaction: all 

contrasts for interaction AB =0 
 
Source of variation       df         SS      MS        
F 
 
factor A                      k1-1            ...      ...        ... 
 
factor B                       k2-1            ...      ...       ... 
 
 
interaction AB    ( k1-1)*(k2-1)     ...      ...       ... 
 
residue    n- k1-k2- (k1-1)*(k2-1)+1...      ... 
 
total                           n-1                ...      ... 
 
 
Test :F...,...  = MS.../MSresidue  
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• Anova Design 
 
Number of factors: generalization of the preceding method with more than two 
factors. The only new element is the occurrence of the several levels of interaction. 
Besides the interactions between two factors (interactions of the first order), there are 
interactions of upper order (second, third...) between 3, 4 ... factors. A second order 
interaction that the amount of interaction between two factors depends on a third one. 
 
Within vs residual error term: Within error term means that denominator of the F-
ratio is the within cell MS. Residual error term means that only residual error is taken 
as denominator which is useful for repeated measurements (as explained after). 
Within+residual error term means that non-significant factors are dropped out which 
makes that error term is increased by non-significant variance (“residual” variance). 
This is the usual option. 
 
Unique Vs sequential testing design:  Unique design means testing all factors and 
interactions simultaneously. Each factor (and interaction) is then corrected for 
confounding effects of all other factors. This is the usual option. Sequential design 
means that factors (and interactions) are included one after another and are corrected 
for those entered before into the model and confounded with those entered after into 
the model. 
 
A NOTE ON TERMINOLOGY:   
 
- Univariate: a single predictor ( X    Y) 
 
- Multivariate: several predictors (X1, X2, …    Y) 
 
- Multivariate in SPSS slang: several dependent variables 
 
(X   Y1, Y2, …) 
 
(X1, X2, …    Y1, Y2, …) 
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- • an example of two-factor ANOVA 
 
Example: relationship between district (4 categories) , salt consumption (in 2 
categories) and systolic pressure (in mm Hg). 
 
Descriptive and bivariate statistics (SPSS output 10.1) 
 
There is a significant relationship between SP and district (F(3,36)= 4.25, p=.01) but 
also between SP and salt consumption (F(1,38)= 204.19, p<.0001),  and seemingly 
between district and salt consumption (χ²(3)= 12.14, p=.007, but this test is only 
indicative as there are more than 50% cells with frequencies below 5). 
 
ANOVA with two factors (SPSS output 10.2) 
 
 
District effect is NS when salt is included into the model (F(3,32)= 0.03, p=.99). 
Interaction is also NS (F(3,32)= 1.27, p=.3) although contrast lines are not strictly 
parallel. Only salt effect remains significant (F(1,32)= 130.46, p<.001). 
 
Conclusion 
 
Salt is a confounder for SP-district relationship. 
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• Analysis of Covariance 
(ANCOVA) 
 
ANCOVA allows us to test effects of 
both categorical and quantitative 
variables on a quantitative variable. 
ANCOVA designs are mixtures of 
ANOVA and regression designs. 
 
Incorporation of  quantitative 
predictors ( “covariates”)  allow to take 
account of their possible confounding 
effects. 
 
• Application conditions: 
Homogeneity of within-group 
variances (as in ANOVA) but also 
homogeneity of covariances. This 
means that both variances of the 
dependent variable and its covariance 
with the quantitative predictor should 
be constant over the different levels of 
the categorical predictor.  
 
• tests for ANCOVA 
 
Homogeneity of variance is tested by 
Bartlett-Box. Homogeneity of 
covariance is tested by introducing a 
factor-covariate interaction into the 
model.  
 
Effect of each factor and each covariate 
is tested separately by F-test, with DF 
calculated in the same way as in 
ANOVA and in regression. 
 
Effect of interaction is also tested 
separately with DF equal to the product 
of factor’s DFs.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
several H0 :  

for testing factor A: all contrasts 

for factor A =0 

for testing covariate X:  ρ =0 

for testing the interaction: ρ is 

constant over A levels. 
 
Source of variation       df         SS      MS        
F 
 
factor A                      k1-1            ...      ...        ... 
 
covariate X               1                 ...      ...       ... 
 
 
interaction AX         ( k1-1)          ...      ...       ... 
 
residue             n- 2* (k1-1) -2       ...      ... 
 
total                             n-1              ...      ... 
 
 
Test :F...,....  = MS.../MSresidue  
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• example of  Analysis of Covariance 
 
Effect of mother education on gestity, controlling for age (covariate). See SPSS output 
10.3. First ANOVA is runned with the age*education interaction in the design. As 
interaction is NS (p=.226), analyze of covariance is applicable. A second ANOVA, 
without interaction with covariate, shows that effect of education is just NS (p=.057). 
Effect of age is S (p<.0005).
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•  Repeated measures ANOVA 
 
To be used when the same  quantitative 
variable is measured on several 
occasions on the same subjects. 
 
Simplest situation: when the same 
variable is measured twice on the same 
subjects. A “paired t-test” can then be 
used. It is based on the mean and 
standard-deviation of  the differences. 
 
Alternative test gives exactly the same 
result: a repeated measures ANOVA ( 
F (DF=1,n-1) = t²(DF=n-1). 
 
With more than 2 measurements, two 
different ANOVA tests are available: 
univariate or multivariate. 
 
Univariate ANOVA: two different 
factors are considered. Subjects are 
taken  as a “random”  factor which 
means that each subject is a different 
level of a factor with n-1 DF. This is a 
random factor because the same factor 
(“subjects”) will usually contain  
different levels (individuals) in two 
different studies. The second factor is a 
“fixed” factor, equivalent to all the 
factors we have considered up to now. 
This factor correspond to the different 
repetitions of the measure. each 
repetition is made in a different 
condition (day, bodily location...) and 
these conditions are the factor’s levels. 
 The denominator of the F ratio used 
for testing the effect of the fixed factor 
is the variance of the fixed factor effect 
across subjects (MS fixed-random 
interaction). This makes sense: the test 
will be less significant when fixed 
factor effect varies more across 
subjects. 
Condition for using univariate 
ANOVA design: Mauchly Sphericity 
Test must be NS (H0: equality of 

variances and covariances of individual 
pairwise differences between levels).  
 
 
example of paired t-test: Is there a 
difference between skull perimeter of 
twins ? See SPSS output 10.4 
 
Paired t-test 
                                   md         
       t  (DF= nd-1) =  
                                sd/√nd 
 
where n is the number of pairs 
md is the mean of the differences  
sd is the SD of the differences  
 
 
Univariate ANOVA (“mixed design”) 
                                                        MS fixed         
 F  (DF=k-1, (k-1)*( n-1)   =  
                                              MS interaction fixed*random 
 
 
where k is the number of repetitions 
           n is the number of subjects 
 
 
 
 
 
 
 
Mauchly Sphericity Test : has to be 
NS for using Univariate ANOVA.  
Sphericity means that variability of the 
fixed factor effect is constant for the 
different possible pairwise differences 
between factor’s levels.  
 
Example: variability of CBF 
differences between cerebral areas A & 
B should be the same as between A & 
C, B & C .... 
 
See SPSS outputs 10.5 & 10.6 

• example of repeated measures ANOVA 
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Cerebral blood flow (CBF) was measured in 5 different cervical regions on the same 
subjects (only subjects with cognitive neglect will be analysed here). Question: does 
CBF depend on the region ? 
 
DATA1

Cerebral Region 

  
 

Superior 
Parietal 

Inferior 
Parietal 

 Posterior  
Temporal 

Frontal I 
 

Frontal II 
 

Mean 5 
regions 

Diagnostic  CBF 1  CBF 2 CBF 3 CBF 4 CBF 5  
neglect       (n=15) 
code = 1 

90.43 88.48 87.38 95.38 93.85 91.11 

no neglect  (n=13) 
code = 0 

97.29 97.68 99.20 98.66 99.38 98.44 

mean both  groups 93.62 92.75 92.87 96.90 96.42 94.51 
Table 10.1 
 
Test of the effect of brain location on CBF for subjects with neglect (SPSS output 

10.5). As Mauchly Sphericity test is NS (p=.13), we can use the univariate test for 

repeated measurements. Effect of brain location is highly significant with this 

procedure(F(df=4,56) = 8.31; p<.0005). Notice that the multivariate test although less 

powerful is also significant but with a higher type I error (p=.025). Simple contrasts 

are not available for repeated measurements. Difference contrasts were used instead. 

They show that differences between Parietal regions are not significant ((p=.16), that 

difference between Temporal and the two Parietal regions is also NS (p=.19). But 

difference between non-Frontal regions and Frontal I region is highly significant 

(p<.0005). (Less interesting: Difference between Frontal II region and all 4 others is 

just significant (p=.033)).  

We conclude from these tests and from the mean values presented in Table 10.1  that 

CBF of sujects with neglect is significantly lower for non-Frontal brain regions. 

 
• example of repeated measures ANOVA in which the within-subjects factor is 

(“random” factor) crossed with a between-subjects factor (“fixed” factor).  

 

Does CBF depend on brain location and on presence vs absence of neglect ? Does the 

effect of brain location  depend on neglect ? To answer these questions, both for 

subjects with neglect and those without neglect are now included in the repeated 

measures ANOVA (SPSS output 10.6).  

                                            
1 Demeurisse, G., Hublet, Cl., Paternot, J., Colson, C. and Serniclaes, W. (1997) “Pathogenesis of 
subcortical visuo-spatial neglect. A HMPAO SPECT study” Neuropsychologia. 35, 731-735. 
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Effect of the between-subjects factor, neglect, is highly significant (F(df= 

1,26)=31.68, p<.0005). Effect of neglect is negative (-7.4) because CBF is lower for 

neglect (coded 1) than for no-neglect (coded 0). As Mauchly Sphericity test is NS 

(p=.199), we can use the univariate test for assessing the effects of the within-subject 

factor, brain location. Effect of brain location is significant (F(df=4,104) = 4.26; 

p=.003) and so does the location-neglect interaction (F(df=4,104) = 3.23; p=.015) . 

Difference contrasts were used for location and simple (first) contrasts for neglect. For 

location, results are similar to those obtained in the previous analysis. Only two 

difference contrasts are significant: (1) between non-Frontal regions, on the one hand, 

and Frontal I region, on the other hand (p=.011); (2) between the Frontal II region and 

all 4 others (p=.023). Neglect-location interaction contrasts are also available in SPSS 

Output 10.5. A significant interaction contrast means that effect of neglect (simple 

contrast) is different in a given location versus the mean of the previous ones 

(difference contrast) and that the effect is larger in this location if the contrast 

coefficient is positive, lesser if the coefficient is negative. Only interaction contrast T4 

is significant here (p=.031) and it has a positive value (5.224) which means that effect 

of neglect is lesser in Frontal I region vs. mean of the 3 non-frontal regions. This 

interpretation can be checked by looking at the data in Table 10.1. Mean of neglect 

effect in Frontal I is about -3 units CBF against -8 units in the three non-frontal 

regions, a difference of about +5 . 

We conclude from these tests and from the mean values presented in the Table above  

that CBF is significantly lower for subjects with neglect and for non-frontal brain 

regions. Further, CBF lowering for subjects with neglect is more important in non-

frontal regions as revealed by the significant location-neglect interaction. 
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Chapter 11    
 
Multiple linear regression 
 
We use multiple linear regression  

when the value of a quantitative 

variable is predicted from the values of 

several other quantitative variables or 

“predictors", using a linear equation.  

 

A partial regression coefficient (b) is 

attached to each predictor. 

 

Relative importance of the predictors is 

given by the standardized partial 

regression coefficients (beta), or by 

partial correlation coefficients  
( ryx1.x2) 

 
r2yx1.x2 is the proportion of variance 

explained by predictor x1  

 

If predictor and dependent variable  are 

not correlated with the other predictor 

r2yx1.x2= r2yx1 

 

Overall strength of the prediction is 

given by a multiple correlation 

coefficient (R). 

R² is the proportion of variance 

explained by all predictors.  

An unbiased estimation of population 

ρ² is given by “adjusted R2” . 

 

 

 

 

 

y’  =  a + b1x1 + b2x2 + ...  +bkxk 

 
 

b1   b2  ...  bk   are partial regression 

coefficients 

 

standardized (partial) regression 

coefficients:  
  betai = bi *sxi/sy 

 
 

squared partial correlation 

coefficients (with two predictors) : 

 
         ( ryx1 - ryx2*rx1 x2)2 

r2yx1.x2 =  

        (1-  r2yx2)(1 - r2x1x2) 
 

 

squared multiple correlation 

coefficient (with two predictors)  
 
                 r2yx1 + r2yx2 - 2ryx1*ryx2*rx1x2 

R2       =  

             1 -r2x1x2 

 

adjusted R2=1-(residual MS/ total MS) 
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•  tests for multiple linear regression 

Test of H0 : multiple correlation 

coefficient is null, by F-test with 

number of degrees of freedom of the 

regression equal to the number of 

predictors. 

 

 

 

 

 

 

 

 

Test of H0: a partial correlation 

coefficient is null, by Student's t-test or 

just the same with a F test.. 

 

 

 

 

 

H0 : β1 = β2 = ... =  βk = 0   

or just the same : ρ = 0 
 
Source of variation       df        SS      MS        F 
 
regression                      k           ...     ...        ... 
residue                     n-k-1          ...     ... 
 
total                           n-1            ...     ...   
 
 
Test :Fk,n-k-1  = MSregression/MSresidue  
 
 

 

 

H0 : β1 = 0  

or just the same : ρ1 = 0 

 
                            r2yx1.x2...xk 

 F1,n-k-1 = 
                        (1 - r2yx1.x2...xk)/(n-k-1) 
 
 

 F1,n-k-1 = (tn-k-1 )² 
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• an example of multiple linear regression 

 
Example: prediction of systolic pressure from weight and cholesterol level in a 
sample of 300 (or slightly less depending on the missing values) male subjects. 
 
Univariate correlations (SPSS output 11.1): 
 
R (SP, Weight) = 0.150 (S, p = .01) 
 
R (SP, chol) = 0.147 (S,  p= .01) 
 
R (chol, Weight) = 0.174 (S, p =.003) 
 
Descriptive statistics (SPSS output 11.2): 
  
 SD (SP) =  16.20 
 
SD ( WEIGHT) =  10.39 
 
SD (CHOL ) =   39.77 
 
 
Multivariate equation: (SPSS output 11.3): 
 
predicted pressure =  116 + 0.18*weight  + 0.05*chol 
 
 
Standardized regression coefficients : 
 
betapressure weight=    0.18*  10.39     / 16.20      ≅  0.11 
 
betapressure chol=     0.05*  39.77  /   16.20   ≅  0.12 
 
 
 
Both predictors have about the same strength. 
 
 
Multiple correlation coefficient: 
 
 
 

 

                                                 (.150)2+(.147)2-2(.150)(.147)(.174)                                                 

R² 
                            =                                                                              ≅           .035 

                                                                 1-(.174)2 
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Percentage of explained variance is about  3 %. 
 
 
 
Tests: 
 
Prediction of systolic pressure from weight and number of cigs. is significant 
(F(2,292) = 3.98; S at p = .02). 
 
Effect of weight alone is significant (S at p=.02). 
 
Effect of number of cigs. is non significant (NS, p= 0.31). 
 
Conclusions: systolic pressure is related to weight; effect of  number of cigarettes a 
day is NS when weight is included in the regression analysis which shows that this is 
not a confounder. 
 
As weight alone is significant ρ estimation should be given by separate correlation 
between systolic pressure and weight : 
 
ρest   =   0.15  ±  1.96 * √(1-.15)2/ (297-2)      =  (0.04; 0.26) 
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•  predictor selection for multiple linear regression 

 

Forward inclusion in the regression equation: predictors are included by order of 

decreasing partial correlation with the dependent variable. The predictor is included if 

the partial correlation is significant and if the multiple correlation with the other 

predictors already in the equation is not too large (if the R² between candidate 

predictor and other predictors is not too large or just the same if 1-R², which is called  

"tolerance", is not too small). 

 

Backward inclusion: all the predictors are included at first and are thereafter 

selectively excluded. A predictor is excluded if the partial correlation is not significant  

 

Stepwise inclusion: starts as in forward but each time a new variable is entered into 

the equation the variables already in the equation are checked as in backward. 

 

See SPSS output 11.4 as example.
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Chapter 12

Multilogistic regression  
 
Multilogistic regression allows to test 
the effects of several predictors, 
categorical or quantitative, on a 
categorical dependent variable. 
Purpose: to cope with possible 
confounding effects and interactions in 
OR estimation. 
 

• Application condition 
 
Relationship between predictors and 
dependent variable should fit a logistic 
regression curve reasonably well, i.e. 
the differences between observed and 
predicted values should be non 
significant.  
Fit is always perfect when all 
predictors are categorical and with all 
terms (factors and interactions) into the 
model (“saturated” model). 
 
 
 

• tests of factors and interactions 
 
Effect of each factor is tested 
separately by -2LL  Improvement Chi-
square (or with Wald test), with DF 
calculated in the same way as in one-
factor logistic regression. 
Effect of interaction is also tested 
separately with DF equal to the product 
of factor’s DFs.  
 
•  predictor selection for 
multilogistic regression 
 
Forwards stepwise and backward 
stepwise selection of both factors and 
interactions are possible. Different 
criteria can be used for each option. LR 
option is the most rigorous criteria but 
takes the longest calculation time. 

 

A model with 3 terms:  2 factors (1 DF 

each) and their interaction. 

Logit (p) = α + β1 x1 + β2 x2 + β3 x1*x2 

 

With 2 DF for factor 1: 

Logit (p) = α + β1 x11 + β2 x12 + β3 x2 

+ β4 x11* x2  + β5 x12*x2 

 

Test that the data fit the logistic model: 

Hosmer-Lemeshow χ² 
 

Practically: exclude large outliers. 

 
 
 

 

 

 

 

 

 

Wald test is always available. 

-2LL  χ² improvement test is only 

available with stepwise selection. 

 

 

Improvement  χ²=   

{-2LL  χ² (model )} - {-2LL  χ² 
(model at previous step)} 

 

Model χ²=  {-2LL  χ² (model)} - {-

2LL  χ² (model with constant only)} 
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•  Mantel-Haenszel procedure 

 

 “Mantel-Haenszel” procedure 

gives results similar to those of  the 

logistic model without interactions (see 

EPI-INFO Output 12.1). 

Using the “M-H” method requires that 

interaction is NS which can be tested 

by the “Wulf” test.
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• Example of multilogistic regression with 2 categorical predictors  

(SPSS output 12.1) 

 

Effect of smoking and ethnic group on loweight at birth in a sample of  189 births. 

Smoking is in two categories (non-smoker, smoker) and ethnic group in 3 categories 

(white, black, other). 

 

Data description: OR-smoker is largest for whites (5.76), lower for blacks (3.30) and 

lowest for others (1.25). 

 

 

Global OR-smoker without stratification is 2.02 (SPSS output 12.2) . But this value 

does not take account of size differences between ethnic group samples (96 whites, 26 

blacks, 67 others) which affect the global OR calculation because loweight prevalence 

is smaller for whites although they display the highest smoking rate. We therefore 

expect a larger OR-smoker estimation when controlling for ethnic group. 

When ethnic group is incorporated into the model (SPSS output 12.3), OR -smoker is 

estimated as 3.05. As expected this is above the 2.02 value obtained without 

controlling for ethnic group. Notice that ethnic group effect is S (p=.01) and should 

therefore be taken into account for OR-smoker estimation. Also note that OR-ethnic 

group (other vs. black) is 1.025 and OR (white vs. black) is 0.338. Risk of loweight is 

thus almost the same for black and other groups and smaller for the white group with 

this model where effect of ethnicity is assessed without taking account of the 

intercation between smoking and ethnicity. These OR cannot exactly conform to the 

data because there is always some interaction between variables, whatever they are. In 

the present data, prevalence of loweight at birth amounts to 42%, 37%, and 24%, 

respectively for blacks, others and whites. The OR (white vs. black) of 0.338 

overestimates  the 18% decrease for white vs. black (the empirical OR is 0.43), 

whereas the OR-ethnic group (other vs. black) of 1.025 slightly distorts the 5% 

decrease for others vs. blacks (underestimates the empirical OR is 0.81).  

 

As shown in Figure 12.1, effect of smoking is not constant across ethnic categories. 

Should the smoker-ethnic group interaction also be taken into the model ? No because 
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it is non significant (P=.22; see SPSS output 12.4). Therefore, confidence limits are 

based on the model without interaction. 

 

95% CI for ln (OR) smoke are: 1.1159 ± 1.96*0.3692 = (0.39 ; 1.84) 

95% CI for OR smoke are: (1.48 ; 6.29) 

 
Had the interaction been significant, we should have a different OR estimation for 
each ethnic category (see above OR-smoker = 5.76 for whites, 3.3 for blacks and 1.25 
for others ). These OR can also be retrieved from the Logistic regression output. Start 
from the fact that “non-smoke” and “black” are taken as reference categories here 
(because we used indicator first contrasts) and that other ethnic groups are in the 
following order: other (2nd) and white (third). Therefore the OR-smoke (3.30) 
coresponds to the risk for the blacks.  OR-smoke for others is obtained by EXP(1.194-
0.971) = 1.25, where 1.194 is the slope the smoke and –0.971 is the slope for the first 
contrast for interaction . Similarly, OR-smoke for whites is obtained by Exp(1.194 
+.557) = 5.76.
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Figure 12.1 - Non-parallelism of logit lines reveals the presence of  ethnic group-

tabagism interaction. The interaction is however non-significant in this example (P 

=.22; see text).
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•   Repeated measures for a 

categorical dependent variable 

 

• McNemar Chi-square 

 
When a categorical variable is 
measured twice on the same subjects 
(“two related samples”) data can be 
represented as follows. We construct a 
contingency table with 2 times 2 
entries, in  which the rows correspond 
to the number of  events (1) or non-
events (0) in sample 1, and the 
columns to the number of events and 
non-events in sample 2. Examples of 
events are: diseased, vaccinated, ... 
Examples of factors which make the 
distinction between samples are: drug 
vs. placebo, district management 
policy, ... In what follows we will take 
the diseased and drug example.  
The contents of the 4 cells within the 
table correspond to the number of 
individuals who are: 
• diseased  with placebo and not with 
drug (s frequency) 
• diseased  with drug and not with 
placebo (r frequency) 
• diseased with both treatments (not 
relevant) 
• non-diseased with both treatments 
(not relevant). 
 
Only part of the data in the table are 
useful for the test. Frequencies of 
diseased or non-diseased with both 
treatments are not used because they do 
not  provide any information on the 
difference between treatment effects. 
Relevant information is only provided 
by frequencies of subjects which 
exhibit a change in one or another 
direction, i.e. by r and s frequencies. 
Difference between directions of 
change is tested by "MCNEMAR 
test". 

 

 

 

 

 

                                            drug 
  1 0 
 

placebo 

1 not 

relevant 

 
s 

 0  
r 

not 

relevant 

 

 

 

 

 

 

 

 

 

MCNEMAR χ² (DF=1) 
 
test of H0:  
          population r = population s. 
 
Provided that (r+s)/2 is larger than or 
equal to 5, the  following ratio: 
 
 

           ( r-s )² 
      
        r+s 
 
 follows an approximate χ² (DF=1) 
distribution. 
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• Non-parametric alternative to 

McNemar: Binomial test 

Used when (r+s)/2 is lesser than 5. 

• Cochran’s Q test  

 
This test is a generalized McNemar 
test. Cochran’s Q test is used when the 
same categorical variable is measured 
twice or more on the same subjects 
(“two or several related samples”). 
 
•  Logistic models with within-
subjects factors 
 
A logistic model with treatment (drug 
vs. placebo) as within-subject factor 
would give similar results to those 
obtained with McNemar test. 
 
Logistic models can also be applied to 
several repetitions (e.g. drug1, drug2, 
placebo), and is then similar to 
Cochran’s Q test. 
 
Logistic models can also be used for 
designs which cannot be treated with 
Cochran’s Q test: 
 
for repeated measures with quantitative 
predictors 
 
 
 
 
 
 
 
for a mixture of within-subjects and 
between subjects predictors 
 
 
 
 
 
Logistic models with within-subject 
factors are not available in SPSS. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
example of within-subject factor with 
quantitative predictors: 
effect of  varying the amount of 
quinine absorption  for each subject in 
a sample of malaria patients 
(quantitative within subject) on malaria 
symptoms (present vs. absent). 
 
 
example of mixture of within-subjects 
and between subjects predictors: 
prevalence of melanoma before / after 
treatment (treatment is within subjects) 
in different countries (between 
subjects). 
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•  Example of Mc Nemar test (SPSS 

Output 12.5). 

 
example: from "Basic medical 
statistics" A.Bahn, Grune &  Stratton 
eds., N.Y. & London, 1972, p.240/ 
 
Results from skin testing 282 patients 
with  2 types of penicillin placed on the 
2 arms of each patient by  random 
allocation. 
      
 
 
 
 
Critical information is provided by the 
cases for which  one of the 2 factors is 
active and the other not.   
 
 
Difference between frequencies of 
toxic reactions for the two penicillin 
fails to reach significance (McNemar 
χ² = 0.12 ; p>.50). (SPSS: use the 
Cochran’s Q command) 
 
 
 
 
 
 
 
 
 
 
Strictly speaking χ²  (z²) applies to 
continuous variables. When we use χ² 
for testing differences between counts 
then we do as if the count was obtained 
by rounding a continuous value. The r-
s difference might in fact be lesser than 
it really is. If r comes from rounding r-
0.5 and if s comes from s + 0.5 then r-s 
is in fact 1 unit smaller or larger. 
 
 
 
Continuity correction: we subtract 1 to 
r-s This is a “conservative” 
procedure because r-s might in fact 
be 1 unit smaller than it really is. 
(With SPSS you get continuity 
correction by using the McNemar 
command) 

 
 
 
                                       penicillin G 

  react no 
react 

peni- 
cillin BT 

react  
10 
 

 
16 

 no 
react 

 
18 
 

 
238 

 
 
 
Compare 18 and 16. 
 
 
As (18+16)/2 = 17 > 5, we 
can use the McNemar test 
 
McNemar =  
(18-16)²/ (18+16) = 0.1176  
χ²  NS (p =.73) 
 

 
 
 
 
 
 
Continuity correction 
McNemar- corrected = 
 (18-16-1)²/ (18+16) = 
0.0294 

χ²  NS (p =.86) 
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• example of  Binomial test (see 
SPSS output 12.6) 
 
31 medical students are given caffeine 
(one day) and a placebo (another day). 
22 sleep well both with caffeine and 
placebo. 8 sleep well with placebo but 
not with caffeine. 1 sleeps well with 
caffeine but not with placebo.  Does 
caffeine have an effect on sleep quality 
? 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion : caffeine affects sleep 
quality (Binomial test; S at p=.0391).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
          Caffeine 

  sleep 
well 

sleep  
bad 

Placebo sleep 
well 

 
22 
 

 
8 

 sleep  
bad 

 
1 
 

 
0 

 
 
 
As (8+1)/2 = 4.5 < 5, we 
cannot use the McNemar test 
 
Binomial test: H0:  n*π = 4.5  
 P( (8 over 9/ n*π = 4.5) or  
(1 over 9/ n*π = 4.5) ) = 
 .0391 
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EPI-INFO output 12.1  
 
Command: statcalc , 2*2*n tables, F6, give file name (mh.txt),  

type data 1st stratum, enter, F5, F2,  

type data 2nd stratum, enter, F5, F2,  

type data 3rd stratum, enter, F5 

enter, F5, F6 

F10 ... 
 
 
     + Disease -                          Analysis of Single Table               
 +--------+--------+                Odds ratio = 3.30 (0.49 <OR< 24.54*)         
+|     6  |     4  |    10         Cornfield 95% confidence limits for OR        
 +--------+--------+          *Cornfield not accurate. Exact limits preferred.   
-|     5  |    11  |    16         Relative risk = 1.92 (0.79 <RR< 4.66)         
 +--------+--------+             Taylor Series 95% confidence limits for RR      
E     11       15       26       Ignore relative risk if case control study.     
x                                                                                
p                                                   Chi-Squares   P-values       
o                                                   -----------   --------       
s                                  Uncorrected    :     2.08    0.1488556        
u                                  Mantel-Haenszel:     2.00    0.1569067        
r                                  Yates corrected:     1.07    0.3003814        
e                                 Fisher exact: 1-tailed P-value: 0.1504106      
                                                2-tailed P-value: 0.2279715      
                                                                                 
                                   An expected cell value is less than 5.        
                                     Fisher exact results recommended.           
                                                                                 
                              F2 More Strata; <Enter> No More Strata; F10 Quit   
                                                                                 
                                                                                 
 
 
 
     + Disease -                    Odds ratio = 1.25 (0.29 <OR< 5.22*)          
 +--------+--------+               Cornfield 95% confidence limits for OR        
+|     5  |     7  |    12    *Cornfield not accurate. Exact limits preferred.   
 +--------+--------+               Relative risk = 1.15 (0.54 <RR< 2.44)         
-|    20  |    35  |    55       Taylor Series 95% confidence limits for RR      
 +--------+--------+             Ignore relative risk if case control study.     
E     25       42       67                                                       
x                                                   Chi-Squares   P-values       
p                                                   -----------   --------       
o                                  Uncorrected    :     0.12    0.7307388        
s                                  Mantel-Haenszel:     0.12    0.7326783        
u                                  Yates corrected:     0.00    0.9882324        
r                                 Fisher exact: 1-tailed P-value: 0.4867171      
e                                               2-tailed P-value: 0.7510270      
                                                                                 
                                   An expected cell value is less than 5.        



Statistical Methods - Master in Public Health Methodology - Chapter 12 
 

185 

                                     Fisher exact results recommended.           
                                                                                 
                              F2 More Strata; <Enter> No More Strata; F10 Quit   
                                                                                
 
     + Disease -                    Odds ratio = 5.76 (1.62 <OR< 22.36*)         
 +--------+--------+               Cornfield 95% confidence limits for OR        
+|    19  |    33  |    52    *Cornfield not accurate. Exact limits preferred.   
 +--------+--------+               Relative risk = 4.02 (1.48 <RR< 10.93)        
-|     4  |    40  |    44       Taylor Series 95% confidence limits for RR      
 +--------+--------+             Ignore relative risk if case control study.     
E     23       73       96                                                       
 
 
 
 
 
x                                                   Chi-Squares   P-values       
p                                                   -----------   --------       
o                                  Uncorrected    :     9.86    0.0016931 �---   
s                                  Mantel-Haenszel:     9.75    0.0017903 �---   
u                                  Yates corrected:     8.41    0.0037386 �---   
r                                                                                
e                             F2 More Strata; <Enter> No More Strata; F10 Quit   
                                                                                 
                                                                                 
 
     + Disease -                                                                 
 +--------+--------+                   ***** Stratified Analysis *****           
+|    19  |    33  |    52                   Summary of 3 Tables                 
 +--------+--------+                                                             
-|     4  |    40  |    44         Crude odds ratio for all strata =  2.02       
 +--------+--------+             Mantel-Haenszel Weighted Odds Ratio =  3.09     
E     23       73       96             Cornfield 95% Confidence Limits           
x                                            1.40 <  3.09 <  6.73                
p                                Mantel-Haenszel Summary Chi Square =  8.38      
o                                         P value = 0.00379798 �---              
s                                                                                
u                                      Crude RR for all strata =  1.61           
r                                  Mantel-Haenszel Weighted Relative Risk        
e                                     of Disease, given Exposure =  2.15         
                                    Greenland/Robins Confidence Limits =         
                                             1.29 < MHRR <  3.58                 
                                                                                 
                                       <Enter> for more; F10 to quit.            
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Chapter 13. Classification Methods 

Statistical Classification assigns subjects to categories in the absence of deterministic information. It 

can be used to answer questions such as:  

- is the subject affected by some disease in the absence of totally reliable criteria (absence of 

“golden standard” which is too expensive for systematic measurements)? ;  

- will the baby survive at birth (we do not know the issue with certitude before delivery)? 

These are situations in which a set of predictors either quantitative or categorical can provide 

probabilistic answers.  

Only an outline of classification methods is presented here:  Elements of Logistic classification, a 

bit more on Discriminant analysis.  

 

13.1 Logistic classification 

Logistic regression can be used for assigning subjects to categories with a simple rule (with 2 

categories):   

if P(cat. 0) > 50%, then assign subject to cat. 0 

if P(cat. 1) > 50%, then assign subject to cat. 1. 

 
Example of logistic classification with data from Armitage (1971) "Statistical Methods in Medical 
Research"(p.340): prediction of presence versus absence of hemolytic disease from measurements 
of hemoglobin and bilirubin in a sample of 79 babies, among which 63 survived and 16 deceased. 
(See SPSS output 13.1). 
Hemoglobin is significant as predictor (p=.0006)whereas bilirubin is not (p=.1675).However both 
were used for classification for the sake of comparison with Discriminant analysis (see below). 
Outcome is coded 1 for survival and 0 for decease. Overall PCC (Percent Correct Classification) is 
92.41%. Sensitivity is 75.00%, specificity is larger and amounts to 96.93%. As a rule, specificity is 
lager than sensitivity with automatic classification when prevalence is below 50% in the sample. 
The reason therefore is that the method gives more weight to the largest subsmaple (here survivors) 
because it has a larger influence on goodness-of-fit. (Trivial situation: if there were only 1 deceased 
then predicting survival for all 79 subjects would give 0% sensitivity but 100% specificity and 98.7 
(78/79)PCC). 
 
Sensitivity / specificity balance cannot be modified in SPSS Logistic regression procedure. This is 
however possible in SPSS Discriminant Analysis, by giving prevalence a value different from the 
sample value. Then the larger the prevalence, the larger the sensitivity vs. specificity. Technical 
aspects of prevalence manipulation in SPSS Discriminant procedure are given below (see “Priors” 
modification).
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SPSS Output 13.1 
LOGISTIC REGRESSION outcome
->   /METHOD=ENTER bili haemo
->   /CRITERIA PIN(.05) POUT(.10) ITERATE(20) .

      Total number of cases:      79 (Unweighted)
      Number of selected cases:   79
      Number of unselected cases: 0

      Number of selected cases:                 79
      Number rejected because of missing data:  0
      Number of cases included in the analysis: 79

Dependent Variable Encoding:

Original       Internal
Value          Value
     ,00       0
    1,00       1

Dependent Variable..   OUTCOME

Beginning Block Number  0.  Initial Log Likelihood Function

-2 Log Likelihood   79,614946

* Constant is included in the model.

Beginning Block Number  1.  Method: Enter

Variable(s) Entered on Step Number
1..       BILI
          HAEMO

Estimation terminated at iteration number 5 because
Log Likelihood decreased by less than ,01 percent.

 -2 Log Likelihood       39,989
 Goodness of Fit        206,075

                     Chi-Square    df Significance

 Model Chi-Square        39,626     2        ,0000
 Improvement             39,626     2        ,0000

Classification Table for OUTCOME
                    Predicted
                   ,00    1,00     Percent Correct
                     0      1
Observed        
   ,00      0      12      4     75,00%
                
   1,00     1       2     61     96,83%
                
                           Overall  92,41%

---------------------- Variables in the Equation -----------------------

Variable           B      S.E.     Wald    df      Sig       R   Exp(B)

BILI          -,4917     ,3562   1,9056     1    ,1675   ,0000    ,6116
HAEMO          ,5343     ,1561  11,7173     1    ,0006   ,3494   1,7063
Constant     -2,3587    2,4790    ,9053     1    ,3414
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13.2 Discriminant analysis 

The purpose of discriminant analysis is to subdivide subjects into 2 or several groups as a function 

of 2 or several measurements (variables). The purpose is thus not to predict a continuous value 

(regression), but well to predict the subject's category. 

(Note: The problem makes sense only if a classification independent of the predictors under study is 

available. Examples: authoritative but more arduous predictors; after a laps of time, nature itself 

makes the difference between e.g. damage and recovery). 

 

There are two steps towards the solution: First, to find the "best" linear combination of variables for 

doing the job. Second, to find the best criteria for separating the subjects on the basis of the 

combined values. 

 

First step: The appropriate linear combination of variables is called the "LINEAR DISCRIMINANT 

FUNCTION": 

 

            y = a + b1x1 + b2x2 + .........bnxn 

(y = discriminant score = D in SPSS) 

 

Procedure for optimizing the b coefficients: the squared difference between the y scores of the 2 

categories (let us suppose for the while that the subjects must be classified in only 2 categories) is 

maximized by comparison with the intra-categorical variance of the scores. In other words: 

maximization of the corresponding t2 or F ratio: 

 

 

 

                                      (mycat1-mycat2)2      between group var. 

 EIGENVALUE= V2 = ---------------  =        ----------------- 

                                        intragroup s2y        within group var.  

 

 

Related discrimination coefficients: 

 

 

 

                     between group SS 

 ETA2      =  ------------------- =           % explained var. 

                          total SS 
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                                     within group SS 

WILK'S LAMBDA  =   --------------- =        % of residual var. 

                                        total SS 

 

 

Wilk's lambda decreases for better discrimination and we have: 

  Eta2 + Wilk's lambda = 1 

When group means are equal (no discrimination at all), Eta2 = 0 and Wilk's lambda = 1.  

 

 

Application condition: hypothesis of equal variances and covariances of predictors (x variables) 

within groups. 

 

(Mathematical procedure: solution of a set of n equations with n unknowns including the intra group 

variances and covariances). 

 

Second step: we are now back to a classification problem with a single variable. The y value to be 

used as boundary between categories will determine the sensitivity and specificity of the 

classification. If we want to equalize these 2 coefficients, the criteria should be placed halfway 

between the means of the 2 categories (y0= (mycat1 + mycat2)/2). (Note: simple rule here because 

equal variances). For other values of sensitivity and specificity, the Normal table can be used under 

the assumption that y is Normally distributed within each category, a condition which is fulfilled if 

the 2 intra-group (multivariate) distributions of y are Normal. 

In the SPSS program, the discriminant boundary (y0) corresponds to a y value such that the 

posterior probability of belonging to one group (e.g. diseased or D+) is equal to the posterior 

probability of belonging to the other group (e;g; not diseased or D-): 

 

        p(D+/y0) = p(D-/y0). 

 

With this boundary value, an item is classified in the group for which the posterior probability is the 

largest. Where is this boundary located? This depends on the prior probabilities of the groups. If 

priors are equal (PRIORS EQUAL in SPSS), then the boundary is located halfway between the 

group means. If the sizes of the groups in the sample are taken as estimations for the priors (PRIOR 

SIZE in SPSS), then the boundary is closer to the mean of the smallest group. If P(D-) > P(D+), this 

implies that sensitivity will be lower than specificity. 
--------------------------------------------------------- 
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Mathematical development: 
See p.30: Prior probability is for the unconditional realization of an event (e.g. for a disease: 
prevalence) whereas posterior probability is for the conditional realization (e.g. diseased if test is 
positive). 
If priors are equal (P(d+) = P(d-)), then the application of Bayes' Theorem allows to state that: 
  p(D+/y0) = p(D-/y0) implies p(y0/D+) = p(y0/D-) 
This means that the boundary is located at the intersection between the probability distributions of 
D+ and D- over y. 
If priors are not equal (e.g. P(d+) < P(d-)), then: 
 
  p(D+/y0) = p(D-/y0) implies p(y0/D+)*p(D+) = p(y0/D-)*p(D-) 
 
and:     p(y0/D+) = p(y0/D-)*p(D-)/p(D+) 
 
as:  p(D-)/p(D+)>1 
 
we have:   p(y0/D+) > p(y0/D-) 
 
This means that the boundary is located closer to the mean of the probability distribution of D+ than 
to the mean of the D- distribution. 
--------------------------------------------------------- 
Generalization to several categories 

Several discrimination functions may be required because a single function is usually not optimal 

for separating all the categories. 

Suppose a first discriminant function has been obtained. The second function will be the one which 

is not correlated with the first and which, together with the first, provides the best separation 

between groups. And so on for the third, fourth ... function. The maximal number of discriminant 

functions is equal to the number of categories minus 1 (that is: k-1) or to n if k-1>n. 
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Example of discriminant analysis  from Armitage (1971) "Statistical Methods in Medical 
Research"(p.340): prediction of presence versus absence of hemolytic disease from measurements 
of hemoglobin and bilirubin. (see SPSS OUTPUT 13.2) 
--------------------------------------------------------- 
Note: 0 = outcome decease, 1 = outcome survival. 
--------------------------------------------------------- 
 
     EQUATION 
 
discriminant function: y = -3.18 + .30*hemoglobin - .18*bilirubin 
 
 
boundary line: 
 
   -1.28 = -3.18 + .30*haemglobin - .18*bilirubin 
 
where -1.28 is a value of y between mean y values for decease and survival groups and such that: 
 
    p(decease/-1.28) = p(survival/-1.28). 
 
The boundary value (-1.28) is obtained by resolving for y in: 
 
    p(decease/y) = p(survival/y). 
 
From Bayes' Theorem, this is the same as solving for y in: 
 
   p(y/decease)*p(decease) = p(y/survival)*p(survival). 
 
Where p(decease) is taken as 16/79 and p(survival) as 63/79 (cf. SPSS PRIORS SIZE).  
 
The suggested rule is: 
 
 if y > -1.28, diagnosis = survival 
 if y < -1.28, diagnosis = decease 

 

How to calculate the boundary value?  

Let p(D+) = 16/79 

p(y/decease)*p(decease) = p(y/survival)*p(survival) 

 

p(y/ survival)/p(y/ decease) = 63/16 

 

from Normal probability density formula (Chapt.3):   

 

           2 

    e
-Zd+/ 2 

p(y/decease)/p(y/survival) =  
           2 

     e
-Zd-/ 2 
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(-Zd+
2
/ 2) + (Zd-

2
/ 2)   =  ln(63/16) 

 

                                         Zd+
 
 = y –(-1.73) (where -1.73 is the mean y for D+; see SPSS ouput13.2) 

                                         Zd-
 
 = y -.44 (where 0.44 is the mean y for D-; see SPSS output13.2) 

 

-(y + 1.73)² + (y-.44)² = 2ln(63/16) 

-(y² + 2(1.73)y + 1.73²) +(y² -2(0.44)y + .44²) = 2ln(63/16) 

 

y = (2ln(63/16) +1.73² -.44² ) / -(2(1.73 +.44)) ≅ 1.28 

 

Formula: boundary = ((2ln((p(D-)/ p(D+)) + myD+² - myD-²) / -(2(-myD+ + myD-)) 

 

IF P(D+)=P(D-)   

THEN  

boundary = (myD++ +myD-)/2 

That is, the boundary is then located halfway between the means of the two distributions. 
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SPSS Output 13.2 
 

OUTCOME
    1,00
     ,00

HAEMO

2018161412108642

BI
LI

7

6

5

4

3

2

1

0

 
 
 
Fig.13.1. 79 cases plotted. As can be seen, hemoglobin level is higher for survivors whereas their 
bilirubin level is lower. 
 
 
 
Example of discriminant analysis on SPSS: same data as above. 
 

DSCRIMINANT GROUPS outcome (0,1) / VARIABLES hemo bili 

/METHOD wilks /PRIORS size/ STATISTICS 1 2 7 10 11 13 14 15. 
 

Since ANALYSIS= was omitted for the first analysis all variables 

on the VARIABLES= list will be entered at level 1. 
 

- - --   D I S C R I M I N A N T   A N A L Y S I S   - - 
 

            79 (unweighted) cases will be used in the analysis. 
 

Number of Cases by Group 
 

               Number of Cases 

  OUTCOME    Unweighted     Weighted  Label 

         0          16         16.0                       

         1          63         63.0                       

     Total          79         79.0 

Group Means 
 

  OUTCOME         HEMO         BILI            

         0        7.75625        4.83125 

         1       13.89683        3.09048 

     Total       12.65316        3.44304 
 

Group Standard Deviations 
 

  OUTCOME         HEMO         BILI            

         0        3.09170        1.34100 

         1        2.84168        1.24883 

     Total        3.79804        1.44264 

---------------------------------------------------------On groups defined by OUTCOME                                             

Analysis number       1 
 

Stepwise variable selection 
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     Selection rule:  Minimize Wilks' Lambda 

     Maximum number of steps..................       4 

     Minimum Tolerance Level..................  .00100 

     Minimum F to enter.......................  1.0000     

     Maximum F to remove......................  1.0000     
 

Canonical Discriminant Functions 
 

     Maximum number of functions..............       1 

     Minimum cumulative percent of variance...  100.00 

     Maximum significance of Wilks' Lambda....  1.0000 

---------------------------------------------------------Prior Probabilities 

   Group    Prior    Label 

 

 

 

       0    .20253                         

       1    .79747                         

   Total   1.00000 
 

---Variables not in the analysis after step   0 -------- 

                     Minimum 

Variable  Tolerance  Tolerance  F to enter    Wilks' Lambda 

HEMO    1.0000000  1.0000000    57.522           .57240 

BILI      1.0000000  1.0000000    24.074           .76182 

---------------------------------------------------------At step   1, HEMO   was included in the 

analysis. 
 

                                  Degrees of Freedom  Signif.   Between Groups 

Wilks' Lambda         .57240        1    1       77.0 

Equivalent F         57.5215             1       77.0   .0000 
 

---------------- Variables in the analysis after step   1 Variable  Tolerance  F to remove   Wilks' 

Lambda 

HEMO    1.0000000    57.522     
 

---- Variables not in the analysis after step   1 -------                      Minimum 

Variable  Tolerance  Tolerance  F to enter    Wilks' Lambda 

BILI       .7886300   .7886300    1.4438           .56173 

Note for p=.05, F(1,77) = 3.95; thus 1.44 NS. However, BILI is included in the model because F > 1 

(default option in SPSS, previous VERSIONS). 

 

At step   2, BILI     was included in the analysis. 
 

                                  Degrees of Freedom  Signif.   Between Groups 

Wilks' Lambda         .56173        2    1       77.0 

Equivalent F         29.6484             2       76.0   .0000 
 

note eta2= 1-.56 = .44 = % explained variance by groups = between group SS/ total SS. 

------ Variables in the analysis after step   2 ---------Variable  Tolerance  F to remove   Wilks' 

Lambda 

HEMO     .7886300    27.072           .76182 

BILI       .7886300    1.4438           .57240 
 

F level or tolerance or VIN insufficient for further computation. 
 

  

 

 

                                Summary Table 
 

          Action      Vars  Wilks' 

Step Entered Removed   In   Lambda   Sig.  Label 

  1  HEMO             1   .57240  .0000 

  2  BILI               2   .56173  .0000 
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--------------------------------------------------                      

 Canonical Discriminant Functions 
 

                 Pct of  Cum  Canonical  After  Wilks' 

Fcn Eigenvalue Variance  Pct Corr  Fcn  Lambda  Chisquare    DF  Sig 

                               :    0   .5617     43.832     2  .0000 

1*  .7802       100      100    .6620 :  
 

note .66 = eta (.662 = .44) 

   * marks the   1 canonical discriminant functions remaining in the analysis. 
 

Standardized Canonical Discriminant Function Coefficients 
 

             FUNC  1     

HEMO        .87172  

BILI         -.23225  

--------------------------------------------------------- 

Structure Matrix: 
 

Pooled-within-groups correlations between discriminating variables 

                                  and canonical discriminant functions 

(Variables ordered by size of correlation within function) 
 

             FUNC  1     

HEMO        .97850  

BILI         -.63302  
 

Unstandardized Canonical Discriminant Function Coefficients 
 

              FUNC  1         

HEMO        .3014171     

BILI         -.1832610     

(constant)  -3.182906     

--------------------------------------------------------- 

Note: .3014171*sd (hemo) = .87172 ; sd (hemo) = 2.59 = sqrt (weighted mean of intragroup variances) 

= sqrt ((16*(3.09)2 + 63*(2.84)2)/79). 
 

The unstandardised coefficient is multiplied by the SD of the predictor (Just as for regression) 
 
 

--------------------------------------------------------- 
 

Canonical Discriminant Functions evaluated at Group Means (Group Centroids) 
 

  Group      FUNC   1     

       0      -1.73042 

       1        .43947 
 

Test of equality of group covariance matrices using Box's M 
 

  The ranks and natural logarithms of determinants printed are those 

   of the group covariance matrices. 
 

    Group Label                 Rank   Log Determinant 

         0                          2        2.719153 

         1                          2        2.255052 

      Pooled Within-Groups 

      Covariance Matrix             2        2.360296 

   Box's M      Approximate F  Degrees of freedom  Significance 

    1.1422         .36144        3,       10372.6      .7809 

--------------------------------------------------------- 

note: discriminant scores = D= y  

if D1 is the highest predicted group, then the highest P(D/G) = P(y/D1), P(G/D) = P(D1/y), and the 

2nd highest P(G/D) = P(D0/y). 
 

Case   Mis      Actual   Highest Probability     2nd Highest  Discrim 

Number  Val  Sel  Group    Group P(D/G) P(G/D)    Group P(G/D) Scores 

     1          1        1  .1072  .9993        0 .0007         2.0504 
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     2          1        1  .2120  .9984        0 .0016         1.6875 

     3          1        1  .1989  .9985        0 .0015         1.7242 

     4          1        1  .3518  .9968        0 .0032         1.3707 

     5          1        1  .2730  .9978        0 .0022         1.5356 

     6          1        1  .1338  .9991        0 .0009         1.9388 

     7          1        1  .1741  .9987        0 .0013         1.7987 

     8          1        1  .1962  .9985        0 .0015         1.7319 

     9          1        1  .2370  .9981        0 .0019         1.6219 

    10          1        1  .1532  .9989        0 .0011         1.8679 

    11          1        1  .2269  .9983        0 .0017         1.6480 

    12          1        1  .4707  .9950        0 .0050         1.1609 

    13          1        1  .5896  .9926        0 .0074          .9788 

    14          1        1  .3876  .9963        0 .0037         1.3034 

    15          1        1  .4692  .9950        0 .0050         1.1633 

    16          1        1  .2920  .9976        0 .0024         1.4932 

    17          1        1  .6441  .9912        0 .0088          .9014 

    18          1        1  .5550  .9933        0 .0067         1.0297 

    19          1        1  .4074  .9960        0 .0040         1.2679 

    20          1        1  .4104  .9960        0 .0040         1.2626 

    21          1        1  .4757  .9949        0 .0051         1.1527 

    22          1        1  .4316  .9956        0 .0044         1.2260 

    23          1        1  .7886  .9867        0 .0133          .7075 

    24          1        1  .5377  .9937        0 .0063         1.0557 

    25          1        1  .5334  .9938        0 .0062         1.0623 

    26          1        1  .7319  .9887        0 .0113          .7821 

    27          1        1  .6109  .9921        0 .0079          .9482 

    28          1        1  .8963  .9821        0 .0179          .5699 

    29          1        1  .7959  .9864        0 .0136          .6981 

    30          1        1  .8902  .9685        0 .0315          .3015 

    31          1        1  .9932  .9760        0 .0240          .4310 

    32          1        1  .9348  .9720        0 .0280          .3577 

    33          1        1  .9338  .9803        0 .0197          .5226 

    34          1        1  .9598  .9738        0 .0262          .3890 

    35          1        1  .6416  .9379        0 .0621         -.0260 

    36          1        1  .9714  .9782        0 .0218          .4753 

    37          1        1  .8880  .9683        0 .0317          .2986 

    38          1        1  .9558  .9791        0 .0209          .4949 

    39          1        1  .9506  .9793        0 .0207          .5014 

    40          1        1  .9961  .9762        0 .0209          .4961 

    42          1        1  .4969  .9047        0 .0953         -.2399 

    43          1        1  .4058  .8723        0 .1277         -.3918 

    44          1        1  .5575  .9207        0 .0793         -.1470 

    45          1        1  .7003  .9473        0 .0527          .0546 

    46          1        1  .6041  .9308        0 .0692         -.0790 

    47          1        1  .5178  .9106        0 .0894         -.2073 

    48          1        1  .6261  .9351        0 .0649         -.0477 

    49          1        1  .3733  .8573        0 .1427         -.4509 

    50          1        1  .4214  .8787        0 .1213         -.3645 

    51          1        1  .3279  .8323        0 .1677         -.5389 

    52          1        1  .2765  .7963        0 .2037         -.6488 

    53          1        1  .5407  .9166        0 .0834         -.1724 

    54          1        1  .3311  .8342        0 .1658         -.5324 

    55          1        1  .2935  .8093        0 .1907         -.6110 

    56          1        1  .1070  .5565        0 .4435        -1.1726 

    57          1        1  .2490  .7727        0 .2273         -.7132 

    58          1        1  .1703  .6790        0 .3210         -.9319 

    59          1        1  .1504  .6466        0 .3534         -.9987 

    60          1        1  .1104  .5647        0 .4353        -1.1571 

    61          1 **     0  .8714  .6530        1 .3470        -1.5685 

    62          1 **     0  .8195  .6197        1 .3803        -1.5022 

    63          1 **     0  .5637  .9035        1 .0965       -2.3078 

    64          0 **     1  .4179  .9959        0 .0041        1.2496 
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    65          0 **     1  .3466  .8432        0 .1568        -.5017 

    66          0 **     1  .1560  .6562        0 .3438        -.9792 

    67          0 **     1  .1374  .6228        0 .3772       -1.0460 

    68          0        0  .7685  .5854        1 .4146       -1.4361 

    69          0        0  .8621  .6472        1 .3528       -1.5567 

    70          0        0  .9816  .7376        1 .2624       -1.7535 

    71          0        0  .6397  .8808        1 .1192       -2.1986 

    72          0        0  .7348  .8479        1 .1521       -2.0691 

    73          0        0  .6071  .8909        1 .1091       -2.2447 

    74          0        0  .3840  .9465        1 .0535       -2.6010 

    75          0        0  .5001  .9203        1 .0797       -2.4048 

    76          0        0  .4626  .9294        1 .0706       -2.4650 

    77          0        0  .7128  .8560        1 .1440       -2.0985 

    78          0        0  .3280  .9571        1 .0429       -2.7086 

    79          0        0  .2533  .9696        1 .0304       -2.8728 

--------------------------------------------------------- 

 

Classification Results  
 

                      No. of    Predicted Group Membership 

   Actual Group        Cases          0          1 

--------------------  ------   --------   --------    

Group       0             16         12          4 

                                   75.0%      25.0% 
 

Group       1             63          3         60 

                                    4.8%      95.2% 
 

Percent of "grouped" cases correctly classified:  91.14% 
 

--------------------------------------------------------- 

MEANS TABLES = discore1 by outcome / STATISTICS 1. 
 

Summaries of   DISCORE1   FUNCTION    1 FOR ANALYSIS      1        

By levels of   OUTCOME                                             
 

Variable      Value  Label              Mean    Std Dev    Cases 
 

For Entire Population             6.7457E-16  1.3256692       79 
 

OUTCOME           0               -1.7304188  1.0420656       16 

OUTCOME           1                 .4394715   .9895542       63 
 

  Total Cases =      79 

Summaries of   DISCORE1   FUNCTION    1 FOR ANALYSIS      1        

By levels of   OUTCOME                                             
 

      

Value  Label               Mean    Std Dev  Sum of Sq    Cases 
 

         0                -1.7304188  1.0420656 16.2885095       16 

         1                  .4394715   .9895542 60.7114905       63 

                          ----------------------------------------- 

Within Groups Total       6.7457E-16  1.0000000 77.0000000       79 

NOTE     weighted  weighted 

     mean   variance 
     about 0  about 1    
 

  (16*(1.04)2+63*(.98)2)/79 = about 1 
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