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Chapter 1. Basic Concepts

 theories and data

* population and sample
* Vvariation

» reference books

Theories guide data collection and interpretation. Testing hypotheses on whole
populations is generally not possible.

Conclusions must be taken from samples of subjects. Uncontrolled variations
between subjects make that a sample never exactly represents the population.
Testing hypothesis in these conditions is the purpose of Statistics, the science
of variation.
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o Data and theories

Science needs data but data alone are by no means sufficient. Interpretation should be
foresighted before collecting data, by choosing a model, or a theory. In its simplest form, a
theory is simply the list of factors which might affect the variable which will be measured. These
factors should then be controlled in the study. This will have the advantage of increasing the
performances of statistical tests.

Models do not only give an advantage in statistical testing. They also guide research. In Popper’s
words “Theories are nets: only the one who throws, will fish” (Popper'). This does not mean that
the causal factor is within the model. Causal factors have however a better chance to be captured
when research is guided by theory. Simply because the latter gives a framework for systematic
collections of data. This is illustrated by the following example.

Exempla : Signing theory (Paracelse, Swiss alchemist and physician, XVIth century). According
to Schwartz?, this theory states that: “...God, being sorry for having created diseases, should
have given to man the plants allowing to combat them, by affecting a recognition sign to each.”
(p.41, my translation).

This is illustrated in Fig.1 (Schwartz, p.42).

Paracelse, the man on the picture, said that the lungwort (left )with its white stains evoking the
color of broncho-pulmonar diseases expectorations was a good remedy; that the nut (above)
which imitates the brain hemispheres was good for this organ; that ginseng roots which look like
thighs were aphrodisiacs; that colchicin (left), a remedy for gout, is extracted from colchic of
which the bulb has the same form as a big toe.(Schwartz, p.42).

Schwartz goes on by stating that ““This model makes us smile today, but, chance helping, signing
theory led to an important discovery: as the willows were growing with their feet in water, they
should contain remedies against fever and rheumatism; one looked into their bark and found
salicylic acid, from which aspirin is derived” (p.41).

The issue of signing theory illustrates quite well the practical interest of models. They give a
framework for progressing, although their truth is only provisional. According to Popper, science
goes not by trying to verify theories but rather by trying to falsify theories. To falsify, or reject,
hypotheses is also at the core of statistical methodology.

. Sample, population and variation

Imagine that a new drug is supposed to cure every subject affected by a given disease. If the drug
can be prescribed to every patient the theory will be rejected as soon as a patient is not cured.
This is a situation where we do not need statistics to test an hypothesis. However, for different
reasons (population size, money, detectability) we can generally not access whole populations.
Often you only have a subset of the population or “sample” for testing hypotheses. Now the

! popper, K. (1959) The Logic of Scientific Discovery. London: Hutchinson
2 Schwartz, D. (1996) “Les modéles en biologie et en médecine” Pour la Science 227, 38-45.
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problem is that a sample never represents exactly the population. Even if we take care of
controlling a set of factors which might affect the outcome of the disease (age, sex, ...), not all the
possible determinants can be controlled because some of them are simply unknown. The fact that
uncontrolled factors vary from subject to subject makes that the determinants will never be
equivalent in two different samples. The consequence of uncontrolled, or intrinsic, variation is
that the “cure everybody” hypothesis might be false even if everybody is cured in a sample. It is
there that we need statistical inference. Statistics is the science of variation (Fisher®).

Statistical inference allows to quantify the risk taken whenever a false hypothesis is not rejected,
as in the above example with the “cure everybody” example. As we shall see this risk is called
the “Type 1I” error (symbol ) and it is quantified with a probability. It is also possible to reject a
true hypothesis, as we will see later with other examples. This is the “Type I” error ( o or p)
which is also quantified with a probability.

. Reference books

Basic statistics:

Statistics in Medicine. T.Colton (1974) Boston: Little Brown Cy.
Essentials of medical statistics. Kirkwood,B. (1998) . Oxford: Blackwell

Nonparametric Statistics for the behavioral sciences. S.Siegel & N.J.Castellan (1988) New York:
MCGraw-Hill.

Adequacy of sample size in health studies. D.W.Lemeshow, D.W.Hosmer, J.Klar & S.W.Lwanga
(1990) New York: J.Wiley.
Advanced statistics:

Statistical Methods for Medical Investigations. B.S.Everitt (1988) New York: Oxford Univ.
Press / London: E. Arnold.

Statistical Methods in Medical Research. F.Armitage (1971) Blackwell Scientific Pub.
Statistical methods for rates and proportions. J.L.Fleiss (1981) New York: J.Wiley.

Statistics. W.Hays (1988). New York: Holt, Rinehart & Wilson.
Logistic Regression. D.G. Kleinbaum. (1994) New York: Springer.
Applied Logistic Regression. D.W. Hosmer & S. Lemeshow. (1989) New York: J.Wiley.

3 Fisher, R.A.(1958). Statistical methods for research workers. New York: Hafner.
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Chapter 2. Sample description

e variabletypes

e linear and exponential functions

e mode, median, mean

e piechart, bar chart, histogram, cumulative polygon
e variance, SD, skewness

Therearethreebasic types of variables: categorical (nominal or
ordinal), quantitative (discrete or continuous) and binary. Data
in asample can be summarized with graphsand descriptive
parameters. Pie chartsand bar charts apply to categorical
variables. Histograms and cumulative frequency polygons apply
to quantitative variables. The mode, median and mean are
central tendency parameters. The mode appliesto all variable
types. Themedian isfor all variabletypesdisplaying rank-order
information (ordinal and quantitative variables). The mean isfor
guantitative variables. The proportion isa mean-like parameter
for binary variables. The variance, standard-deviation (SD), and
skewness coefficients are dispersion parameters. Variance and
SD apply both to quantitative and binary variables. Skewnessis
for quantitative variables.
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o Variable types

Data are used of capturing different aspects of the individual such as presence versus absence of
hearing impairment, kind of impairment, degree of impairment, number of impaired per district,
or hearing loss in decibels (dB). These are all different types of variables®. Variables such as
presence versus absence of impairment, vaccinated or not, male or female, .... can only take two
different values. These are binary (or “dummy”) variables. Variables such as kind of
impairment, bloodgroup, method of delivery, .... can take several values, each corresponding to a
different category. As the categories displayed by these variables cannot be ranked in a definite
order, these are nominal variables. Variables such as degree of impairment, age group, health-
related quality of life (HRQOL), ....are also categorical. But, unlike nominal variables, they can
be ranked in a specific order. These are ordinal variables. Variables such as number of impaired
per district, number of childbirth per day, number of trypanosomes per blood sample, are
quantitative in nature, although not continuous. These are discrete variables or “counts” . Finally,
variables such as hearing loss in dB, systolic pressure, weight at birth,... are quantitative and
continuous.

Figure 2 gives variable types differences represented in a triangle. Basic distinctions are between
categorical variables (either nominal or ordinal), quantitative variables (either discrete or
continuous) and binary variables. As we shall see the latter share both categorical and

quantitative properties.

nominal : continuous
discrete

categorical quantitative

! Stevens, S.S.(1946) On the theory of scales of measurement. Science 103, 677-680.
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¢ Linear and exponential functions

y3

y2

y1

X1 X2 X3

One quantitative variable () is a linear function of another quantitative variable (X) if any
difference inYdivided by the related difference in X is constant. Further, any ratio between two
differences in Y is equal to the corresponding ratio in X. The exponential function is one of the
many possible nonlinear relationship between two quantitative variables. This function is very
useful for describing statistical distributions. The exponential function can be linearized by
taking its natural logarithm (LN Y).

Y =exp (4X+1)

1200

1000 /

800

600

400

200 /
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LN (Y) =4X + 1

Linear function:
y =a+ bx

b = slope=increaseof y for 1 unit
increase of x

a = intercept = value of y when x=0

Exponential functions y= e where ex 2.72

e(a + bx)

Linearization of exponential functions

LN (y)=a+ bx
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Propertiesof linear functions

Yoo V1 Y3- Y2 Y3- Y1
e = = b
Xo. X1 X3. Xo X3. X1

Yo- Y1 Xo. X1

Y3- Y2 X3. Xp

Y3- Y1 X3. X1

Y3- Y2 X3. Xp

Yo- Y1 Xo. X1

Y3- V1 X3. X1

100
120
200
160

N patients

U.C. - 560 800 - 500 U

Cost

500 kF
560 kF
800 kF
Unknown Cost(U.C.)

160 - 120 200 - 100

U.C. - 500 160 - 100

560 - 500 120 - 100

What about the equation ?

Two examples of solutions (among many others)

C.=

u.C.

560 + 300*40/100

500 + 60*60/20

Example of application of linear function: The consumption of drugs in a hospital amounts 500
000 B.F. for 100 patients, 560 000 B.F. for 120 patients and 800 000 B.F. for 200 patients. On
these grounds, calculate the consumption for 160 patients ?

680

680
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800 - 500
bz — = 3

200 - 100

a - 800 500 - 800 a= 800 + (-200)*(-300)/ (-100) = 200

0-200 100 - 200

Cost = 200 + 3*(nber of patients)
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o Descriptive parameters

Data in a sample can be summarized by different central tendency and dispersion parameters.
Available parameters depend on variable type.

e Central tendency parametersfor categorical variables (non-binary): thereisonly 1
central tendency parameter, called the Mode.

The mode is obtained by comparing the number of data in the different categories. The number
of data in a given category is called its frequency. The share-out of data in different categories is
called a frequency distribution. Take the example of language-impairment. The frequencies of
different kinds of language impairments are given in Tab.1, together with relative frequenciesin
%. Different graphical representations of category frequencies are possible. Relative frequencies
of kinds of language impairment are represented in Fig.3 with an apple-pie chart and in Fig.4
with a bar chart. In general, some categories are more frequent than others. As can be seen,
phonological impairments are most frequent. By definition, the most frequent category is the
mode.

relativef =f/n

k
n =samplesize=X (f;)
=1
where i represents a numerical index varying from 1 (first class) to k (last class)

various impairments 47 13%
stuttering 58 16%
hearing impairment 51 14%
phonological impairment 208 57%

total 364 100%

Table 1. Frequencies of different kinds of language-impairments (from: Woods, Fletcher &
Hughes, 1986%; p.9).

2 Woods,A., Fletcher,P., and Hughes,A. (1986) Statistics in Language Sudies. Cambridge: Univ.
Press.
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various
impairments
13%

stuttering
16%

phonological
impairment
57%

hearing impairment
14%

Fig.3 Apple pie chart
Relative frequencies of different kinds of language impairments in a sample of 364 male

subjects with language impairments (Woods, Fletcher & Hughes, 1986; p.9).
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100%

90% +

80% +

70% +

60% +

50% +

40% +

30% +

20% +

10% +

0% -

various impairments stuttering hearing impairment phonological impairment

Fig.4 Bar chart
Relative frequencies of different kinds of language impairments in a sample of 364 male
subjects with language impairments (Woods, Fletcher & Hughes, 1986; p.9).
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e Central tendency parametersfor ordinal variables: Mode and Median.

For ordinal variables, the mode can also be used for obtaining the central tendency. But there is
another possible parameter based on rank-order. The median is value such that 50 % of the
(other) values in the sample are lower and 50 % are higher.

The median is part of a family of parameters called per centiles.

PERCENTILE 50 = value corresponding to 50% of the cumulative frequencies (rank n/2).
Percentile 50 is slightly different from the median (rank n/2). For large samples, percentile 50 =
median.

PERCENTILE 25 = is the value which leaves 25% of the observations in the sample below.
PERCENTILE 75 leaves 75% of the sample below etc...

Percentiles 25, 50 and 75 are also called respectively first, second and third quartiles.

The median and other percentiles are not easily seen in a histogram but are straightforward in a
polygon of cumulative frequencies (see Fig.6) which relates the upper limit of each class and
the sum of the frequencies of the preceding classes.

e Exact formula (for small samples):

median = percentile 50 = value with rank order = (n+ 1) / 2
e Approximate formula for percentiles (large samples).
P50 = rank order just below P50 +

50 % - cum.fr.(%) rank order just below P50

cum.fr. (%) rank order just above P50 - cum.fr. (%) rank order just below P50

Example with a small sample: recovery on a 1 to 7 scale in a sample of 5 patients is 5,27, 1, 6
value rank order
1 1

~NOo o1 N

2
3
4
5
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Median is 5

Example: frequencies of family income in 13 categories (by courtesy of Prof. Lagasse)

Valid Cum

Value Frequ. Percent Percent Percent

2
4
5
10
37
59
94
108
143
114
71
33
10
60

O oo ~NO Ol WN P

el ol el
WwWNEFE O

3 3 3
) 6 9
7 7 16
13 14 30

49 54 84

79 86 17,0 P25 =6+ (25-17.0)/(30.6-17.0) = 6.59
125 136 30,6
144 157 46,2 P50 = 8 + (50-46.2)/(67.0-46.2) = 8.18
19,1 20,7 67,0 P75 =9+ (75-67.0)/(83.5-67.0) = 9.48
152 16,5 835

95 10,3 938

44 48 98,6

1,3 1,4 100,0

8,0 Missing
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= 0
S
g
20+
104
0
1 2 3 4 5 6 7 8 9 10 11 12 13
FAMILY INCOME
100
=
S
o
3
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=
o

2 3 4 5 0 11 12

FAMILY INCOME
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e Central tendency parametersfor quantitative variables. Mode, Median and Mean.

Besides mode and median, there is one more central tendency parameter available for
guantitative data.

This parameter is the usual arithmetic mean, i.e. the sum of the values of the sample divided by
the size (symbol n) of the sample. The mean is a meaningful parameter with quantitative data
because the 4 arithmetic operations make sense, which is not the case with merely ordinal data.
However, the median still has an interest for metric data because it is not affected by deviant
(extreme) values. On the contrary the mean is affected by deviant values, especially in small
samples.

n

MEAN= m = ( 2 X;)/n
i=1

n = sample size; i represents a numerical index varying from 1 (first data) to n (last data)

The histogram is the most usual graphical representation for quantitative data. The histogram is
obtained by first grouping data into classes (see procedure below). The frequency of each class is
then represented as a function of its central value (see Fig.5). When data are grouped into classes,
the approximate value of the mean can be computed as follows.

k

m= (2f x)/n
c=1

Xc = central value of class; fo=frequency of class; k= number of classes

The mode is easy to see in a histogram. For data grouped into classes the mode is the central
value of the class with the highest frequency. The interest of the mode is that it gives indications
on the homogeneity of the sample. The presence of 2 or several modes, or at least of 2 or several
local modes (peaks in the distribution separated by valleys), indicates that several kinds of data
have been mixed.
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Example: rate of insulin in the umbilical vein for 30 subjects.
Data (in units per cm®)

subject index | units per cc
1 37
2 39
3 40
4 40
5 40
6 28
7 37
8 42
9 27
10 29
11 58
12 36
13 42
14 30
15 21
16 36
17 34
18 53
19 84
20 38
21 43
22 40
23 66
24 36
25 50
26 23
27 56
28 47
29 76
30 36
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BUILDING AN HISTOGRAM & A CUMULATIVE FREQUENCY POLYGON

A simpler picture of the data can be obtained by grouping the data into classes. The following
strategy can be used in this purpose:

1) calculate the RANGE of values (maximum -minimum = 84 - 21 = 63).

2) choose the NUMBER OF CLASSES. Guideline values are between 10 and 20.(Take
10 with the small sample used here).

3) define the WIDTH of the class by taking a number just above the following ratio:
RANGE / NUMBER OF CLASSES
(In the example: 63/ 10 = 6.3; take 7 as class width).

4) define the LIMITS of the classes in such a way as each observation falls into one and
only one class. Simplest strategy is to put the limits of the classes between possible values. The
CENTRAL VALUE of the class is midway between the limits (e.g. for the lowest class (20.5 +
27.5)12= 24).

(example: the lower limit of the lowest classis 20.5 which isjust below the lowest value of the
sample and next limits are 27.5, 34.5 etc...)

5) count the number of data (frequency) per class.

6) The HISTOGRAM is obtained with the classes indicated on the abscissa (by their
central values-as in Fig.5 or by their limits) and their frequencies on the ordinate (by bars).

Relative frequencies (in %) can also be used.

7) With the exact formula, the mean = 42,13 units per cc
The mean calculated with the approximate formula for data grouped into classes is:
m = (3*24 + 4*31 +....1*87)/30= 42.67 units per cc

8) Fig.5 shows that insulin rate distribution is homogeneous because there is only a single
mode located at 38 units per cc.

9) the POLYGON OF CUMULATED FREQUENCIES shown in Fig.6 is easily obtained
from the histogram data.

10) the PERCENTILES calculated with the approximate formula for data in classes are:
percentile 25 = 34.5+ 7*(25 - 23.33)/(63.33 - 23.33) = 34.79
percentile 50 = 34.5 + 7*(50 - 23.33)/(63.33 - 23.33) = 39.17

percentile 75 = 41.5 + 7*(75 - 63.33)/(76.67 - 63.33) = 47.62

[ class | frequency | frequency |class |cumulativ |cumulativ |
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central in percent | upper e e
value limit | frequency | frequency
in
percent
24,00 3,00 10,00 27,50 3,00 10,00
31,00 4,00 13,33 34,50 7,00 23,33
38,00 12,00 40,00 41,50 19,00 63,33
45,00 4,00 13,33 48,50 23,00 76,67
52,00 2,00 6,67 55,50 25,00 83,33
59,00 2,00 6,67 62,50 27,00 90,00
66,00 1,00 3,00 69,50 28,00 93,33
73,00 1,00 3,00 76,50 29,00 96,67
80,00 ,00 0,00 83,50 29,00 96,67
87,00 1,00 3,00 90,50 30,00 100,00
Histogram

Ko>0ocad=mT
= I I
o N e
'} '}

(e}
[

24,0

INSULIN

31,0

38,0 45,0 52,0

Fig.5 Histogram of insulin rate

100%

Cumulatiye freaneniev (06

Fig.6 Polygon of cumulative frequencies for insulin rate

75%

25%

0%

o
20.5 275

345

415 485 555

Insulin rate (in units ner cc

62.5

Std. Dev = 14,38
Mean = 42,1
N = 30,00
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e Dispersion parametersfor quantitative variables. Variance, Standard-deviation (SD),
Skewness coefficients.

Dispersion is matter of degree and kind of variability.

The variance (Symbol 52) is the sum of the squared differences between each value in the
sample and the mean, divided by the number of degrees of freedom (DF). DF of variance in the
sample is n (sample size). We will see later (Chapter 3) that DF for estimating variance in the
population is equal to n-1.

The standar d-deviation (or SD; Symbol s) is the square root of the variance. This gives a
parameter measured in the same units as m. The coefficient of variation provides a index of
dispersion which does not depend on the units of measurement.

Variance and SD are parameters of dispersion around the mean. To understand the variance and
SD formulas it must be stressed that we cannot simply add the differences between sample
values and their mean because the sum is always null. There are several ways to escape this
problem. One solution is to take the mean of the absolute differences to obtain what we call the
"mean deviation". This parameter is however seldom used because absolute values are not easily
processed in the mathematical framework. The alternative consists in squaring the differences.
The skewness refers to the degree of asymmetry of the distribution. The distribution is
symmetrical when there is the same number of data below and above the mean, i.e. when mean
and median coincide. When the mean is lower than the median, the distribution is "skewed" to
the left. When the mean is larger than the median, the distribution is generally (but not always)
skewed to the right. Fisher skewness coefficient (g1) is negative in case of left asymmetry, null
in case of symmetry and positive in case of right asymmetry.
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n
Variance = $° =( 2 (xi- m)*)/n
=1
n
Standard-deviation (sp)=S = v ( 2 (- m)?)/n
=1
k
Standard-deviation (sp)=S = V(2 f; (Xe- m)?)/n
c=1

Xc = central value of class; fo=frequency of class; k= number of classes

Coefficient of variation = s/m
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Examples of variance, SD and coefficient of variation.

for the following sample of weights in kg: 6, 9, 10, 12, 15
m=10.4 kg
variance = S(xj-m)? /n = (19.36 + 1.96 + 0.16 + 2.56 + 21.16) / 5= 9.04 kg?

SD = VS(xj-m)2 /n = 9.04 = 3.01 kg
Notice that S(xj-m)/ n =(-4.4-1.4-0.4 +1.6 +4.6)/5=0
S(xj-m)/ n = always 0
Comparison between samples with different variances.
Take the two following samples of age measurements:
first sample: 5, 7, 8, 10, 12, 14, 15
second sample: 1, 4, 7, 10, 14, 18, 20
For the first sample: m=10.14 years and s2=11.84 years squared

For the second sample: m=10.57 years and s2=43.39 years squared

Comparison between SD and coefficient of variation:

if 3108, 3245, 3302, 3104, 4002 are weights in grams
m=3352.2 s$=333.91 s/m=z=.10

if the same weights are measured in kg: 3.108, 3.245, 3.302, 3.104, 4.002
m=3.352 s=0.334 s/m=.10

SD for data in classes.
example: albumin data (see above)

With the exact formula, SD = 14,38 units per cc
The SD calculated with the approximate formula for data grouped into classes is:

SD =V (3%(24-42,67)2 + 4*(31-42,67)? +....1*(87-42,67) 2)/30 = 14.15 units per cc

Example of skewed distribution
The distribution of insulin rate (in Fig.5) is skewed to the right, as it often happens for

physiological or psychological variables. Accordingly, Fisher skewness coefficient is positive
(91=1.946). Right asymmetry can be removed by taking the logarithm of the variable.
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e Boxplot graph: values inside the box are between P25 and P75 (50% of the distribution); small
horizontal bars are the largest and smallest values which are not outliers; O points are values
more than 1.5 boxlength below P25 or above P75; * points are values more than 3 boxlength
below P25 or above P75.
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e Central tendency and dispersion parametersfor binary variables. Proportions.
The proportion of cases in one category (p) also gives the other (1-p). A proportion is equivalent
to a mean value provided that the value 1 is assigned to one category and 0 to the other. The

variance also has a meaning and is equal to p*(1-p).

m :(n]_*l +n0*0)/ n = n]_/ n=p
n; = number of values in category 1; ny= number of values in category 0
Nn=n{+nNg

s2 = (ng(0-p)2 + ny(1-p)2) /n = p*(1-p)

Examples: in a sample of 100 subjects, the variance of p is

p variance SD

5 25 5
1 .09 3
9 .09 3

The variance is the highest for .5 and gets lower when the proportion gets closer to 0 or to 1. This
makes sense. Sample heterogeneity is maximal when the two characters occur with the same
frequency (50 %).
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Chapter 3. Probability

Probability

Normal distribution

Poisson distribution

Binomial distribution
Categorization and ROC curves

Probability is the limite value of relative frequency in an ideal-infinite
sample called the population. Frequency distributions are obtained with
data, probability distributions are given by laws (formulas). For continuous
variables, probability distribution follows the Normal law. For discrete
probability distribution follows the Poisson law, or Normal law (expected
frequency >5). For binary variables, probability distribution follows the
Binomial law or the Normal law (for expected frequencies >5).
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e Probability

e Empirical definition (Bernoulli, Kolmogorov). The probability (P) of an event is the limit

value reached by its relative frequency when the size of the sample tends to the infinite. The

exact probability cannot be given because the relative frequency of an infinite sample is not
available. The relative frequency however allows to approximate the probability. And, the
larger the sample, the better the approximation. The problem raised by this definition of
probability is that the precision of the estimate cannot be specified without refering to the

notion of probability: there is a danger of circularity in the empirical definition of probability.

e

=

m .

®

:

V4

% .

nd

POPRATE
3 ] ] ] ] ; ] ° RATEFB
10 20 40 80 160 20 640 1100
Sanple size (n)

Fig.3.1 Empirical Probability - Rate of females at birth as a function of sample size in a finite
population of 1100 babies.
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e Subjective definition (Bayes), a probability is the quantification of the subjective "degree of

belief" that a proposition is true. This definition allows to start from an initial prior
probability which can thereafter be improved by empirical observations. Prior probability
can be based on a theory, or a model.

Example of empirical probability: a screening test reveals that the number of patients affected by
tuberculosis amounts 2700 in a sample of 105000 inhabitants, taken at random in a given district.
The relative frequency is of 2700/105000= 2.57 %. This can be taken as an estimation of the
probability of tuberculosis in the district. The precision of the estimate is provided by sampling
theory (see below), which is also based on the notion of probability.

e Probability rules:

Limits
0<P(e<1

Addition rule

P(e1 OR e2) = P(e1) + P(e2) - P(e1 AND e2)
Events are exclusive when they cannot occur together, then: P(e1 AND ep) = 0.

Multiplication rule

P(e1 AND e2) = P(e1)* P(e2/ e1) = P(e2)* P(e1/ e2)

where P (e2 / e1) is a conditional probability, namely the probability that e
occurs when eq is present.

Events are independent if probability of one event does not depend on the
presence vs. absence of the other, then:

P(e2/ e1 present ) = P(e2/ e1 absent) = P(e2)
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Example of addition with exclusive events: different types of cells

(.

O > O -

P (grey or rectangle) = P(grey) + P(rectangle) -
P (grey and rectangle)

(I GQ (I
‘g; (I

Example of addition with non-exclusive events:

=02+05-0=0.7

O P (grey or rectangle) = P(grey) + P(rectangle) -
P (grey and rectangle)
GQ (I

=03+05-0.1=0.7
- O

U @

Example of multiplication with non-independent (related) events:
P (grey and rectangle) = P(grey)*p(rectangle/grey) =
= (3/10)*(1/3) = 1/10
P (grey and rectangle) = P(rectangle)*p(grey/rectangle) =
= (1/2)*(1/5)=1/10

Example of multiplication with independent (non-related) events:

P (grey and rectangle) = P(grey)*p(rectangle) =

o O g = 0.25%(L/3) = 1/12
O V=
2, ooa
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Examples of addition exclusive events: membership of a bloodgroup for the same individual
because the belonging to a bloodgroup excludes the one to another bloodgroup.

if P(belonging to gr.0)= .40 and P (belonging to gr.A)=.15

then P(belonging to O or A)= .40 + .15 = .55

Examples of addition of non-exclusive events: toxic reactions in repeated administrations of a
drug because the development of a toxic reaction after the first administration does not prevent a
second one (adapted from Colton p.70).

Suppose the P(toxic reaction)=.1 and that the probability of developping 2 successive toxic
reactions equals .06, then

P (toxic reaction either at first or at second administration) =

1+1-.06=.14

Examples of multiplication of independent events: if the probability of toxic reaction remains
constant for repeated administration then P (2 successive toxic reactions ) = .1*.1 = .01
Examples of multiplication of non-independent events: if probability of a second toxic reaction,
given a previous one is larger, say .6 instead of .1, then P (2 successive toxic reactions ) = .1*.6
=.06

Example of in dependent vs. dependent events in a 2 by 2 table. Consider a finite population of
950 subjects.

D+ D-
T+ 30 50 80
T- 20 850 870
50 900 950

D and T are dependent as shown by unequal conditional probabilities either
in columns or in lines:

P (T+/D+) > P (T+/D-)

P (D+/T+) >P (D+/T-)

D+ D-
T+ 5 90 95
T- 45 810 855
50 900 950

D and T are independent because conditional probabilities are equal

P(D+ and T+) = P(D+)*P(T+)

Just the same: cell frequency (D+ and T+) = line total * column total/ grand total
Example: 95*50/950 = 5
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e Bayes’ Theorem:

P(T+and D+) =P(T+/D+)*P(D+) = P(D+/T+)*P(T+)

P(T+/D+) = P(D+/T+)*P(T+)/ P(D+)

We see that the probability to test positive when diseased is not the same as the probability to be
diseased when testing positive. It is only when the probability of testing positively is equal to the
prevalence that the two conditional probabilities are equal. Otherwise probability to test positive
when diseased is larger than the probability to be diseased when testing positive if the probability
of testing positively is larger than the prevalence. And the converse is true when the probability
of testing positively is smaller than the prevalence.

Similarly:

P(T-/D-) = P(D-/T-)*P(T-)/ P(D-)
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e Normal distribution

Most natural frequency distributions are bell-shaped. Central values are much more frequent than
extreme values and there is a gradual frequency decrease from central to extreme values (see
insulin disrtibution, Fig.5). The typical bell-shaped is symmetrical. Natural distributions are not
always symmetrical but can be made symmetrical with appropriate variable transformations
(such as log-transforms). Ideal bell-shaped distributions are given by the Normal probability

formula. A frequency distribution is empirical by nature and is never perfectly Normal.

Normal formula

1 7212
Pz)=— e
\]Zn

where X Isa continuous variable
X-HU
z= — = “Normal deviate”
o
L = mean
c=SD

Why is the Normal distribution so common? Because the sum of a large number of variables
follows a Normal distribution whatever the distributions of the variables, provided that the

variables are independent.
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The central-limit theorem says this in more precise terms:

Each sum of n independent random variables X1,X2, X3, ....,Xp, is an asymptotic Normal
variable.

Asymptotic means that the distribution gets closer and closer to the Normal as sample size (n)
gets larger and larger. Besides the independence requirement, the only other restriction to this
theorem is that the variables must be of the same order of magnitude. Otherwise, if the numerical
values taken by one of the variables are much larger than those taken by the others, its
distribution will dominate the sum.

Example: comparison between two games with dice.

First game: with a single dice, each player chooses a figure from 1 to 6 and wins if the dice falls
on the figure. In this game the 6 possible events are equiprobable, provided the dice is fair, and
the probability distribution is rectangular (Fig.13).

Second game: with 2 dices, each player chooses a number corresponding to the sum of 2 figures
between 1 and 6, that is a number between 2 and 12.

Which number would you choose ?

Choose the 7 because the outcomes are no more equiprobable and 7 is the most frequent
combination (Fig.). The distribution has lost its rectangular look for a triangular shape. Further,
the distribution becomes unimodal and symmetrical (the most frequent value corresponds to the
mean (7)). These are also the two main features of the Normal distribution. However, the
triangular distribution is still far away from the Normal one, which is bell shaped and provides a
probability for each of the values taken by a continuous variable from minus infinite to plus
infinite. For 3 independent variables, the distribution of the sum is already bell shaped, and for 5
it is almost indistinguishable by eye from the Normal.
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2 3 4 5 6

issues with a single dice
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Fig.3.2 lllustration of the Central-Limit theorem : comparison between two games with dice.
First game: 1 dice, the 6 possible figures are equiprobable.
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Fig.3.3 lllustration of the Central-Limit theorem : comparison between two games with dice.
Second game: 2 dices, there are 6*6 = 36 possible issues corresponding to the sum of the 2
dices. The table below gives the SUM of the 2 dices for each possibe combination. As can be
seen, the middle-range values are more frequent than the extreme values. The distribution is no
more rectangular but triangular (as shown on the graph). With 3, 4, 5, ... dices, the distribution
becomes progressively bell- shaped.
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Fig.3.3.1. An example showing how the distribution gets closer to Normal as the size of the

sample increases (From Colton, Fig.44; see Ref. in Chapterl).
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A large sum of random variables has a probabilty distribution close to the Normal one (see
Fig.10). The Normal distribution is unimodal and symmetrical. As the Normal distribution is for
a continuous variable, the sum of the probabilities between any two values is a probability area,
which is represented on the graph by the area below the curve and between the two values. The
total probability area is equal to 1 (values are exclusive and exhaustive events).

Remarquable values:

Limits Probability Aeras
between p-o and p+o about 2/3 (67 %)
between p-2c and p+2c about 95 %
between p-3c and p+3c about 99.5 %

Any Normal distribution is completely specified by 2 parameters (1 and o) and can be
transformed into the standard Normal distribution of mean=0 and SD=1.

z=(X-Wlo

If x is distributed N(u,0) then z is distributed N(0,1). The normal-deviate z gives the distance
between the mean and any point of the distribution in standard deviation units. Example: if the
weight is N( 3000g, 5009), a weight of 4000g corresponds to z=2 which indicates that it is 2 SD
above the mean; a weight of 22509 corresponds to z=-1.5 which indicates that it is 1.5 SD below
the mean, etc... A condensed table of Normal probability values in given below (for a full table
see Kirkwood pp.206-207). It gives the probability area above z, for z values regularly spaced
between 0 and +3. As the Normal distribution is symmetrical, the probability area below -z is
equal to the one above +z.

Examples:
above z=1 probability area =.1587
below z=-1 p=.1587
above z=1.96 p=.025
below z=1.64 p=1-.0505=.9495

above z=-1.64 p=1-.0505= .9495
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p
. 0.5
0.84 0.2
CEED 1.0 0.16
. , 1.64 0.05
. =) .. ) 1 1.96 0.025
-2 v —AqT o 3 AJT + 29 2.33 0.01
Mo 2.58 0.005
— -] 3.09 0.001

Fig.3.4 Normal Probability Curve and Table (condensed)
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¢ Poisson distribution (for discrete variables)

Poisson distribution applies to variables such as:

- the number of childbirth per day in a hospital

- the number of accidents per year at a crossroads
- the number of trypanosomes per blood sample

- the number of bacteries per volume of water.

Each of these variables is a number of events as a function of an extraneous factor such as time,
space, volume, etc... The occurence of an event is distributed according the Poisson law if the
probability rate of occurence is constant (over time, space; e.g. birthrate constant over days...).
Constancy can be admitted if the 2 following conditions are fulfilled:

1) PROPORTIONNALITY: the number of events must be
proportionnal to the extraneous factor taken as reference (for time: number of events per month =
number per year/12 etc...). This implies that the number of events should not depend on the piece
of reference (the moment of observation, portion of space ...). Non proportionnality arises from
trends, especially for long periods of time (over decades). Cyclic trends, or "seasonal variations”,
can disturb proportionnality in the short run (months in the year with increase in childbirth).

2) INDEPENDENCE: the events must be independent (one
delivery must not affect the occurence of another, one accident must not give rise to another).
This can be admitted provided that the time span is appropriate (a day rather than an hour for
accidents at a crossroads).

The variance of the Poisson distribution is equal to the mean: o2 = p. The Poisson distribution is
characterized by a right (positive) asymmetry but tends to be symmetrical as the mean increases.
Further, Poisson distribution is approximatively Normal for mean values equal or larger than 5.

Poisson Formula (for u>0)

p(x events) = pX/(e'*x!)

where x =any positive integer
e = constant = basis on natural logarithms = about 2.72
p = expected number of events = mean of the distribution

Normal approximation
For p>5: Poisson — Normal
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Example of Poisson variable: if the expected number of childbirth in a given hospital is 2300 per
year; then the expected number per day is about 2300/365 = 6.3. Application of Poisson formula
gives (A graphical representation is provided in Fig.3.5):
number of childbirth probability
0 .0018
1 .0115
2 .0363
3 .0762
4 .1200
5 1513
6 .1588
7 1429
8 1126
9 .0788
10 .0496
etc...
0,16
0,14 +
0,12 +
> 01+
5
@® 0,08 +
o]
o
Q 0,06 +
0,04 T
0,02 +
0 - =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
number of childbirth a day

Fig.3.5 Poisson distribution
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e Binomial distribution (for proportions)

Poisson and Binomial law both apply to number of events. However, a Binomial variable
corresponds to the realisation of some event versus another in a sample of definite size (the size
of the sample corresponds to the sum of the frequencies of the two events). For a Poisson
variable, the size of the sample is not specified (the frequency of the alternative event is not
specified). In fact, the Poisson law applies to events of which the frequency is very small by
comparison with the alternatives (in the above examples: the number of women who do not
deliver a given day in a hospital, the number of vehicles who get through the crossroads without
accident ...).

Knowing the probability of an event (r) for a single item in a population , what is the probability
that this event occurs a given number of times (x) in a random sample of n items? This is the
sampling distribution problem for a proportion. The solution is provided by the Binomial law, or
Bernouilli law.The Binomial distribution is symmetrical for © = .5, otherwise it is not
symmetrical. Notice that three different proportion-like values are involved in the Binomial

formula: 7t the probability of infections in the population, p the probability of samples with x
events/n, and X/n the proportion of events in a sample.

Binomial Formula

p(x events over n)= CXp* (m)X* (1- m)N-X

CXp=n!/x!(n-x)! (combination of n events x by x)

n= prob. of the event in the population = mean of the Binomial
distribution (1 = w). Variance isg2 = * (1-w)/n

p = prob. of x timesthe event in a sample of sizen

X = number of events per sample

Nor mal approximation for a Binomial distribution: if n*m and n*(1-n)
are both equal or larger than 5

Binomiaik —  Normal
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Example: If the probability of infection is .3 for the subjects which undergo a specific operation,
what is the probability of having 0, 1, 2, 3, 4 infected subjects among the 4 operated each day in a
hospital?
Partial answers can be obtained by the application of the multiplicative law. If we admit that the
group of 4 daily operated subjects is a random sample taken from the population of all those who
undergo the operation, then the individual probabilities of infection are independent and remain
equal to .3, and :

p(all infected) = (.3)4 = .008

p(none infected) = (.7)4 = .24

The multiplicative law does not give the complete solution if we want the probability that some
part of the group will be infected.

For 1 infection over 4:
p(patient in the first bed infected and the 3 others not) = .3*(.7)3

This probability must be multiplied by 4 because there are 4 patients in the sample and for each
of them the infection risk amounts 30 %:

4% 3%(.7)3 = 41
For 2 infections over 4:
p(patients in the first 2 beds infected) = (.3)2(.7)2
This probability must be multiplied by the number of combinations of 4 elements 2 by 2 :
C24 = 4121(4-2)1 =6
p(2 infected over 4) = 6*(.3)2(.7)2 = .264

Similarly for 3 infections over 4:

p(3 infected over 4) = C3,4%(.3)3(.7)1 = .0756
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Sample Probablity (p)

0% 25% 50% 100%

Proportion of subjects infected (x/n)

Fig.3.6 Binomial law.
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categorical Poisson | |Normal

Normal quantitative

Binomial
Nor mal

Binary (“Dummy”)
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_o ROC curves for diagnostic tests

In applied statistics we often consider more than just one probability distribution. For example,
analysis of diagnostic tests typically requires two different distributions, one for “normal”
subjects and the other for “diseased” (see Fig. 3.8). As these distributions always exhibit some
degree of overlap perfect classification is not possible. We cannot find some criteria (C) such
that all normal subjects fall on one side and all diseased on the other side. In other words,
diagnostic tests are always below 100 % specificity and sensitivity, and above 0% false positives

and false negatives.

Notations and terminology

D+ D- D+ D-
T+ (P(D/d) or | (P(D/n) or T+ sensitivity | false
positive
P(T+/D+) P(T+/D-)
T- (P(N/d) or | P(N/n) or T- false specificity
negative

P(T-/D+) | P(T-ID-)

Different tests will differ in performance, the lesser the overlap between the distributions the
better the performance. But for a given test, with a specific degree of overlap, specificity and
sensitivity will depend on the location of the criteria. Moving the criteria along the test scale has
opposite effects on specificity and sensitivity, with one coefficient increasing if the other is

decreasing (compare Figs. a & b in 3.8).
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Figure 3.8. ROC curve

When distributions are Normal with equal variance(as in Fig.3.8), moving the criteria has regular
effects on sensitivity and specificity. These effects follow what is a called “ Receiver Operating

Characteristic” curve (ROC curve) in a two-dimensional diagram with sensitivity on the Y axis
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and false positive rate (= 1 -specificity) on the X axis. (Fig.3.8, bottom). Any point along this

curve corresponds to the sensitivity-specificity pattern for a given criteria location.

The diagonal in a ROC diagram corresponds to a test with sensitivity equal to false positives.
This occurs when distributions of normal and diseased subjects completely overlap. The lesser
the overlap the larger the distance between the ROC curve and the diagonal. Degree of non-
overlap can also be measured by taking the difference between distribution means divided by
their SD:

/ mg-mp/
d= —

The d” is similar to a z value. It gives the distance between means in number of SD (SD units).
Comparison of ROC curves for different tests allow to rank their performances independently of

criteria location (see Fig.3.9).
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The sensitivity/specificity of a test varies with the stage of disease.
ROC curve for carcinoembryonic antigen (CEA) as a diagnostic test for colorectal
cancer according to stage of disease. (Redrawn from Fletcher RH: Carcinoem-
bryonic antigen. Ann Intern Med 104:66-73, 1986.)

Figure 3.9. ROC curves for different tests.
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The smooth aspect of the ROC curve is only obtained with ideally Normal and equal-variance
distributions. In practice, ROC curves are less regular as shown by the curve in Fig.3.10., which
relates sensitivity-specificity for different prediction of disease at birth with a combination of
different parameters (skull perimeter, delivery mode, mother’s age, mother’s education, nber.
living children).

Sensitivity
o

00 ] ]
00 1 2

w1
Ny
o1
o
L
ook
©

10

False Positive

Fig.3.10. ROC curve for prediction of disease at birth with a combination of different parameters
(calculated from data in mat7e97.sav file; data by courtesy of Prof. Hennart PHS-ULB).
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Chapter 4. Confidence I ntervals

Sampling Distribution

Confidence Interva for amean
Confidence Interva for a count
Confidence Interval for a proportion

The sampling distribution of the population mean is the distribution of
sample means in a population of samples. For continuous variables,
sampling distribution of the mean is given by by Normal formula (variance
known), or by Student’ st formula (variance unknown). For counts
sampling distribution is given by Poisson formula, or by Normal formula
(expected frequency >5). For proportions, sampling distribition is given by
Binomial formula or by Normal formula (for expected frequencies >5).
Sampling distributions are used for calculating confidence intervals. The
95% confidence interval of amean is arange of values around the data
mean in which the population is located with 95% probability.
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¢ Sampling Distribution for Mean

There are several ways of extracting a sample from a population (see Chapter 5 for
further information). The simplest way to proceed, for the purpose of parameter
estimation, isto extract elements at random elements (i.e. each element must have the
same probability to be extracted) and independently of each other (i.e. the probability
that one element is extracted must not depend on the extraction of another element;
counterexample: "snowball" sampling technique in toxicology). When these 2
conditions are fulfilled, the sampleis said to be "random™ and "simple". When
samples are random and simple, each possible sample has the same chance of being
selected from the population.

Suppose that we measure the mean values (m) of the random-simple samples of a
given size (n) extracted from a given population. We can imagine a population of
sample means and a corresponding sampling distribution.The sampling distribution
of amean is Normal even if the distribution of the population of individual itemsis
not Normal, provided that sample size (n) is not too small. Thisisa consequence of
the Central-Limit Theorem. Finally, the variance of the sampling distribution of the
mean is n times smaller than the variance of the individual itemsin the population.
The variance of the mean is n times smaller than the one of individual items. The SD
of the mean is called the standard error.

The variance of asum of n independent variablesis equal to the sum of
their variances

a2 of (Xxj) = X 6j2 = n*c2

As each variable is extracted from the same popul ation of variance

o2 (xj) = o2

and as

o2 (Xj/n) = o2/n2

then
62 (Zxj/n) = n*c2/n2

c2ofm =o2/n
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Standard Error = SD ( m)=c/Vn

e Confidenceinterval for a mean

Statistical inference theory can be used for assessing the generality of a parameter
value. Thisis called parameter estimation. Parameter estimation leads to the
specification of a“confidenceinterval”, which isthe statistical equivalent of the
precision interval in measurement theory (if the precision of weight measurementsis
in grams, then each weight is measured with a precision of + 0.5 g). However, the
confidence interval is not a deterministic concept. The true value is not necessarily
within the interval, it only has some chance to be there.

The mean value in a sample can be considered as an estimate (called a point
estimate) of the true mean, or population mean. The precision of the estimate is given
by the limits of the confidence interval.

A confidenceinterval isaninterval as small as possible around the sample mean and
such that the population mean is contained in it for a given percentage of the samples.
Thus the 95 % confidence interval contains the true mean for 95 % of the samples; the
99% confidence interval contains the true mean for 99% of the samples and so on. Let
us simplify the problem by looking for a symmetric interval around m. Then, all we
have to find to specify isasingle value, let uscal it c, such that:

m-c <y <m+c for 95% of the samples.

Aswe have: -c < u-m < +c, the problem isto find an interval centered on O whichis
the midpoint between -c and +c...

and which contains the difference p-m for 95% of the
samples.

O,
Given that p-m is distributed normally (like m) with zero mean (p-p) and / Jn as
standard deviation (like m),

O,
the limits of the interval are equal to - or + 1.96* /\/ﬁ (see
Fig.4.1).

Indeed the limits would be - or + 1.96 for the standard Normal distribution because
the probability of having avalue either above 1.96 or below -1.96 is .05 (see Normal
table in Chapter 9) and hence the probability of having a value between -1.96 and 1.96
is 95%. Given that m-p is aso distributed normally with zero mean but with a SD =

O, O,
/ Jn , these values must be multiplied by / Jn in order to obtain the corresponding
limits.

Conclusion:
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O,
the values m + 1.96* / Jn are the 95% confidence limits for the population
mean p, that is p is contained within these limits for 95% of the samples.

In the same way:

O,
the 99% confidence limits are m & 2.58* / Jn , Where 2.58 corresponds to
p=.01in the bilateral table (A2).

Com?&bfeﬂc,e. Jnlerval
J-I‘Emva[/e, cle an/;'amce,
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& &
/sfffm ){__4.%?;‘—- o
- m Y "
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|
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Fig.4.1 Confidence interval

example: from Colton p. 127/ survival time for drug-treated cancer patients.
m = 46.9 months
n = 100 subjects
o =43.3 months

the 95% confidence limitsare.  46.9 + 1.96*43.3/+/100=

v
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46.9 + 8.5 = (38.4 ; 55.4)

the 99% confidence limitsare;  46.9 + 2.58*43.3/+/100=
46.9+ 11.17 =(35.7 ; 58.1)
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e Confidenceinterval for a mean with Student’st distribution

What to do when the population SD (o) is unknown ?

When the SD of the population is not known, the SD of the sampling distribution of
the mean is not known exactly but can be estimated from the SD measured in the
sample.

DF for estimating variance in the population is equal to n-1. Why n minus 1? Clearly
if thereisonly 1 observation, there is no information about dispersion around the
mean in the population. The number of degrees of freedom (DF) is zero. With n=2,
thereis 1 possible source of variability and df=2-1=1, etc...Thus: df=n-1.

n

estimation of population Variance= & = ( 2 (x- m)* )/(n-1)
=1

estimation of standard error = s/vn

In these conditions, m-p/s/\n is not distributed normally because not only m but also
s/\n fluctuates from sample to sample. The distribution is somewhat different from
the Normal and is called the Student’st distribution. The t distribution depends on
the number of degrees of freedom (df) of s, which are equal to the size of the sample
minus 1 (n-1). The mean of any t distribution is 0 and its SD=1+(2/df-2) for df>2,
which indicates that the SD becomes closer and closer to 1 asthe df get larger. Table
A3in Kirkwood givesthet values for different probabilities and different dfs. The
structure of the tableis different to that of the Normal table: the values taken by the
random variable (the t values) are inside the table, and not outside, on the periphery.
Each line corresponds to a degree of freedom and each column to a probability. Notice
that the table A3 provides both the unilateral and bilateral probabilities: the lower row
gives the probability areain 2 tails, i.e. the one above the corresponding t value and
the other below -t, whereas the first row of the table only gives the areain the tail
abovethet value. Thet distribution is symmetrical, just like the z distribution. This
makes that if we take the probability of having avalue larger than agivent valuein
the table (e.g. for df=30 and t=2.042, P=.025 as indicated by "One sided P value"),
this probability taken twiceis the probability of having at value larger than the
tabulated value or lower than minus the tabulated value (in our example P=.050 as
indicated in " Two sided P value ").Finally we see that the t values approach the z
values when the df getslarger. With 30 df thefirst digit is generally identical. For 120
df the 2 first digits are generally identical. The valuesin the last row, with an infinite
number of df, are the same as the z values.

Thet tableis used for the specification of the confidence interval when o is unknown.
The 95% confidence limits are:
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m + th-1xg//n

where th-1isthe valuein the Student's t table corresponding to n-1 df and to a
bilateral P=.05.

example:mean CBF (Cerebral Blood Flow) is 98.44 with a SD of 3.066 in asample
of 13 subjects without cognitive neglect.

95% confidence limitsare:  98.44 + 2.179 *3.066/V13=
98.44 + 1.853 =(96.59 ; 100.29)

99% confidence limitsare:  98.44 + 3.055* 3.066/\13=
98.44 + 2.598 = ( 95.84 ; 101.04)
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e Confidenceinterval for a count

IfE>5 Poisson — Normal

95% Confidence Interval: m+ 1.96 * Ym/n

Example of Poisson variable: if the expected number of childbirth in a given hospital is
2300 per year; then the expected number per day is about 2300/365 = 6.3. Application of
Poisson formula gives (A graphical representation is provided in Fig.12)::

number of childbirth probability

.0018
.0115
.0363
.0762
1200
1513
.1588
1429
1126
.0788
.0496

owoo~NoOulh~WwWNEO

=

etc...

95% Confidence interval for year count

2300 + 1.96 * V2300/1

Limits are (2206; 2394)

precision is + 94 childbirth ayear
relative precision is 94/2300 = 4.1%

95% Confidence interval for day count
6.3+ 1.96 * V6.3/365

Limits are (6.04; 6.56)

precision is+ 0.26 childbirth a day
relative precision is 0.26/6.3 = 4.1%

Absolute precision is better for day vs. year, but relative precision is constant.
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e Confidenceinterval for a proportion

Normal approximation for a Binomial distribution
if n*p and n*(1-p) are both equal or larger than 5
Binomial — Normal

95% ConfidenceInterval:  p+1.96* Yp*(1-p)/n

Confidence interval for a proportion: example in which Normal approximation is
possible.

(from E. Truy, Vth Int. Cochlear Implant Conf., New Y ork 1996; p.21): Oblitaration
of the cochleawas investigated with high resolution computer tomography (HRCT) in
asample of 101 candidates for cochlear implantation. Result showed partial or total
oblitaration of cochleain 14 cases.

p =14/101 = 13.86 %
np= 14; n(1-p) = 101-14 = 87
np and n(1-p) are both larger than 5, Normal approximation is possible.

the 95% Confidence Interval is: 13.86 + 1.96* 113.86*86.14/101 =

13.86+ 6.74
Confidence Limitsare: 7.12 ; 20.59
There is a 95% probabbility that the proportion of cochlea oblitaration in the
population of implantee candidatesisin the 7 to 21% interval.
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continuous

count
categorical Poisson | [Student'st
Normal | [Normal

Binomial
Normal

binary
contrasts beween
categories

95% Confidencelnterval:

continuous variable: mtt (o5~ \s?/n

count (if E > 5): m+z (g5 * Ym/n

proportion (if E >5): p+z (95 * Vp*(I-p)in
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Chapter 5. Conformity testsfor a single sample

e Null hypothesis, Significance test
False positives and Confidence
t-test for a mean

False negatives and Power
chi-square test for a count
chi-square test for a proportion
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o Null Hypothesis and False positives (Typel Error)

Purpose of statistical tests: What do sample measurements of contrasts,
R and OR coefficients tell us about population values ?

The Null Hypothesis (Ho) says that the contrast is null in the population
(that the difference between the sample value and zero is only due to
chance).

The Null hypothesis is rejected if:
- the 95% Confidence Interval does not contain the HO value
- or just the same: the P value is lesser than 5% (.05).

When the Hy is rejected we say that the test is significant and we give the
Pvalue (Satp=.0...).

When the Hyis not rejected we say that the test is non-significant and we
also give the P value (NS at p = .0...). The P value is the chance that the
difference between m and HO value is due to random variation between
samples.
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NS 1 o

=]
NS = o -
= = -
5 = L s
) \
Z 2

I

P =2, EP>s2

Figure 6.1 False positives (Type I error)
e t-test for a mean

Example: conformity of mean weight at birth with a population value.

Suppose that previous studies suggest that the mean weight at birth should be 3100 g.
Is this compatible with the obtained mean of 3251 g in a sample of 41 babies,, where
SD =5257?

In other words:
Is our sample extracted from the same population as before ?
Is there a change in mean weight at birth ?
Is the null hypothesis of 3100 g true ?

These questions lead to the following one in statistical terms:

What is the risk we take if we state that the difference between the sample
mean and the our hypothesis on the population mean is NOT due to random
fluctuations ?

Answer: if the true mean is really 3100, the islj is equal to the probability of obtaining
a difference at least as large as | 3251-3100 [: 151].
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Calculation: given that population SD is unknown, the sampling distribution of m is
Student's t with 40 df and
p(difference> | 151 | )=

| 151 |
p(t40>----o- )=

525/\41
p(t40> [ 1.84)

The table indicates that the probability is between .10 and .05, thus:

p > .05, the risk we take in concluding to a difference is higher than 5%.
There is more than 5 % chance that the difference between the mean weight at birth
and the population value is due to random variation (sampling variation).

The issue of the test is not simply "no, the null hypothesis is not true" or "yes, the
hypothesis is true”...
but between "reject the null hypothesis with a given risk"

or " the hypothesis is compatible with a given risk".

How to conclude then ? BY CONVENTION, we decide NOT TO REJECT the
population hypothesis if the risk is larger than 5%. We then say that the test is NON
SIGNIFICANT (NS, p > .05).

Convesely, if the risk is lesser than (or equal to) 5% we decide to REJECT the
population hypothesis. The test is SIGNIFICANT (S, p <.05).

The risk to reject the HO when in fact it is true is called "TYPE | ERROR" or c.or P :
o = p(RHO/HO true).

This risk is equivalent to the FALSE POSITIVE in diagnostic tests. However,

whereas false positive probability in diagnostic test is the risk of deciding that a single

subject is different from some norm when in fact he is not, type I error is the risk of

deciding that the mean of a sample of subjects is different from some norm when in

fact it is not.
« False negatives (Typell error) and Power

Type | error is the risk to reject a true hypothesis. This is the risk we take when the test
is significant. But we also take a risk when the test is non significant. This is TYPE Il
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ERROR (or B) and it is defined as the probability of not. rejecting the Hy when in fact
it is false:
B = p(NRHO/HO false).

This risk is equivalent to the a FALSE NEGATIVE in diagnosis tests. Again, whereas
false negative probability in diagnostic test is the risk of deciding that a single subject
is not different from some norm when in fact he is, type Il error is the risk of deciding
that the mean of a sample of subjects is not different from some norm when in fact it
is.

An alternative hypothesis, labelled H, must be specified for calculating the Typel|
error. The difference between Hy and Hy corresponds to the precision of the test. The
higher the precision, the higher the Typell error.

There is a straightforward relationship between the significance test and the
confidence interval. Confidence is the probability of not rejecting the Ho when it is
true with a given precision.

A 95% C.1. contains all the Hy values which would not be rejected at p=5%. This
means for instance that a OR is not significant if its C.I. contains the value 1. A 99%
C.I. contains all the Hy values which would not be rejected at p=1%. Etc...The
confidence level (1-a) is the complement of the rejection level (o).

The Power of a test (1-B) is the complement of the type Il error (3). Power is the
probability of rejecting the Ho when it is false with a given precision.

Hpistrue Hpisfalse
reection of HO type | error right issue
(significant test) type lerror =a.or p Power = (1-B)
p = P(RHq /Hp true) Power = P(RH,/H, false)
non regection of HO right issue type Il error
(non significant test) Confidence = (1-a) type Il error = 3
Confidence = P(NRHg /Ho B = P(NRHy/H, false)
true) = P(NRH /H; true)

Example of Type Il error calculation . Return to the “cure everybody” drug (Chapter
1).
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Ho:m=1
Data: 100% cured in a sample of 30
Sampling distribution: Binomial (calculations are simpler than with Normal

approximation)

Alternative hypothesis Type Il error and Power

30
Hq 7 =.99 B= P(NRHq /H1 true) = P(p=100%/r =.99) = .99 = 0.74; Power= 0.26

30
Hym=.9 B= P(NRHq /H1 true) = P(p=100%/r =.90) = .90 = 0.04; Power= 0.96
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« Chi-squaretest for a count

The sampling distribution of a count is the Poisson distribution. Thus we should in
principle make use of the Poisson distribution for testing an hypothesis on a count.
However, with the Poisson distribution the procedure is rather tedious, especially for
large samples. We can therefore use the Nor mal approximation, as we did for the
confidence interval, provided that observed frequencies are equal or larger than 5
(Chapter 4). We can also use a Pear son Chi-squar e (symbol y?) test, which will give
exactly the same results as the Normal test. The interest of the Chi-square is that it
will be useful for further applications. Chi-square with only 1 DF (as for the present
application) the same as a Normal variable squared (z?)

Pear son Chi-sguarefor counts

O isthe observed count

Null hypothesis (Hp): E isthe population count

Sampling distribution of O-E

is a Normal z distribution . Remember that mean is the same as variance for a Poisson
variable.

Sampling distribution of (O-E)2

is a Chi-squar e distribution with DF=1
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Example of conformity test for a count in which Chi-square (or Normal)
approximation is possible.

Is a rate of 6.3 chidbirth a day compatible with the 11 expected in the population ?
As 11 is larger than 5, Normal or Chi-square approximation can be used.
z=(6.3-11)/N11=-1.42

Table shows that test is NS (p = .156). Rate of childbirth in sample is not
significantly lesser than in population.

¥2 = (6.3-11)?/11 = 2.01

Table shows that test is NS (p>.1). Rate of childbirth in sample is not significantly
lesser than in population.
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« Chi-squaretest for a proportion

The sampling distribution of a proportion is the Binomial distribution. Thus we
should in principle make use of the Binomial distribution for testing an hypothesis on
a proportion. However, with the Binomial distribution the procedure is rather
tedious, especially for large samples. We can therefore use the Nor mal
approximation, as we did for the confidence interval, provided that observed
frequencies are equal or larger than 5 (Chapter 4). We can also use a Pear son Chi-
square (symbol y?) test, which will give exactly the same results as the Normal test.
The interest of the Chi-square is that it will be useful for further applications.

Pear son Chi-squarefor proportions

p is the expected value is sample of size n; thus np and n(1-p) are the observed absolute
frequencies Q,

Null hypothesis (Hp): Po isthe population value; thus nPyand n(1- Py) arethe
expected absolute frequencies g,

Sampling distribution of (O-E)°

is a Chi-squar e distribution with DF=1
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Example of conformity test for a proportion in which Chi-square (or Normal)
approximation is possible.

(from E. Truy, Vth Int. Cochlear Implant Conf., New York 1996; p.21): Oblitaration
of the cochlea was investigated with high resolution computer tomography (HRCT) in
a sample of 101 candidates for cochlear implantation. Result showed partial or total
oblitaration of cochlea in 14 cases. Is this compatible with an expected prevalence of
25% oblitaration in deaf subjects ?

p =14/101 = 13.86

np=14; n(1-p) = 101-14 =87

Expected values: 25.25 (25% of 101) and 75.75 (75% of 101)

25.25 and 75.75 are both larger than 5, Chi-square approximation is possible.
Observed values: 14 and 87

x2 = (14-25.25)2/25.25 + (87-75.75)475.75 = 6.68

Table shows that test is S (p< .01). Prevalence in sample is significantly lesser than in
population.
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Chapter 6. Univariate significance testsfor two or several samples

t-test and ANOVA for 2 means
ANOVA for several means

Contrasts for means

Chi-square test for 2 proportions
Chi-square test for several proportions
Contrasts for proportions
Non-Parametric tests
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e test for a difference between 2 means

Purpose: is the difference between two sample means due to chance or do
they come from different populations ?

In other words: is the relationship between a categorical and a
quantitative variable due to chance or is there some relationship in the
population ?

Null hypothesis (Ho) = the 2 population meansareequal (1 = 1))

Test Rationale: if population means are equal for the different levels (Hg) then the

variance of level-means around the grand mean should only be dueto random
fluctuations (sampling variations). Variance between levels will then be of the same
nature as variance of individual measurementswithin each level. Variance between
levelswill be smaller becauseit isthe sampling variance of a mean (g%/n), but a
simplerelationship exists when thisistaken into account.

If Hgistrue, then: 6°m=0%IN

2 _ 2
N*6 m = 0%

2 2 _
n*ocn/ox =1

Estimations of between-category (n*o?, ) and within-category (o%) variancesfrom
the data.

Estimation of BETWEEN-category variance = [n1*(m1 - m)2 + no*(mo - m)2]

where nq n are the sample sizes, m is the weighted grand mean. We take weighted

mean because it the best estimation of the population grand mean under Hy. The null
hypothesis says that data from the different categories are taken from populations with the
same mean and each data should therefore equally contribute to the estimation of this
common mean. This is obtained either by adding up the individual data or by weighting the
category-means by the category-sizes.

Estimation of WITHIN-category variance = $5= [2(Xj1 - M1)2 + Z(xj2 - mp)2]/ n-2

where Xjj are individual data, mj are category means, n is the total sample size.
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Sampling distribution of between category variance

within category variance

is a Fisher F distribution with df = 1; n-2

and

Sampling distribution of | [between category variance

within category variance

isa Student t distribution with df = n-2

Application condition for F- test and t-test : within category variance should be the same
for all categories.

Before testing the significance of the between- versus within- variance difference we must
verify that within-category variance is more or less the same for the different categories. If
this is not true within-category variance estimation will depend on the number of
observations per category. As the number of observations per category generally changes
from study to study, this will make that estimation of within-category variance will also
change. Therefore it is necessary to test the equality of within-category variances (of the
category-components of the total within-group variance) with either a Cochran-C or a
Bartlett-Box-F test, or a Levene’s test (the latter is the most resistant to non-Normality).
These “HOMOSCEDASTICITY” tests should be NON-significant for drawing exactly the
right conclusions from the ANOVA. For small samples, ANOVA should only be applied if
at least the B-Box is NON significant. For large samples, we can be more tolerant because
even small differences between within-category variances are then significant. For equal-
size categories, or small differences between size-categories (so long as the ratio of the
largest to the smallest category-size is only about 1,5. Note' ), ANOVA can be applied
whatever the issue of the homoscedasticity tests.

Alternative test: if homogeneity of variance tests are significant, use t-test for
means with unequal variances.

! According to Hays (1988), p.373.
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Test of a difference between means (one factor case)

Are Sample Szesfairly ssimilar ?
(below limit ratio sample sizes 1.5)

S

ANOVA
if only 2 means : also T-test
(option: equal within category variances)

Are within-category Variances equal ?
(Homogeneity tests:
Levene’s test or Cochran C or Bartlett)

(Homogeneity tests NS) (Homogeneity tests S)

Kruskal-Wallis test
if only 2 means : also T-test (or Mann-Whitney)
(option: UNequal within category variances)
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Example in which ANOVA test (or t-test) can be used for comparing two means:
effect of sex of newborn on weight at birth.

Data: n=749
boys nl =398 ml=3317.61¢g s1=521.2753 ¢
girls n2= 351 m2 =3135.88 ¢ s2 =516.9227 g

Calculations for F-test: see SPSS Output 6.1

Bartlett-Box test: NS (p=.871), we can use ANOVA.

F(df=1,747) = 22.85; S at p<.0005.

Difference in mean weight between boys and girls is indicated in SPSS Output
“Estimates - Sex- parameter coeff” . The corresponding t-value (4.78) is the square
root of the F value (22.85).

Conclusion: the 181.72 g weight difference between boys and girls is highly
significant (p<.0005).

Calculations for t-test: see SPSS Output 6.2

Levene’s test: NS (p=.803), we can use “equal variance option”.
t(df=747) = 4.78; S at p<.0005.

Same conclusion.

Conclusion: S at p <.0005. There is less than .0005 chance that mean weight at birth
difference between boys and girls is due to random variation (sampling variation).
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Example in which ANOVA test (or t-test) can NOT be used for comparing two
means: Application of t- test for unequal variances

Effect of smoking (no coded 0; yes coded 1) on pregnancy duration in a sample of
569 deliveries.

See SPSS Output 6.3.

Cochran’s C and Bartlett-Box are both S (p<.0005) so we cannot use ANOVA, t-test
for unequal variances should be used instead.

See SPSS Output 6.4.

Levene’s test for equality of variances is S (p=.042), confirming the use of unequal
variances option.

Conclusion: pregnancy duration is not significantly shorter for smokers (p=.197).
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o ANOVA test for differences between several means

T-test can not be used for testing equality between several means. ANOVA test is then
available and is calculated is much the same way as above. The only difference lies in
the number of degrees of freedom.

Null hypothesis (Ho) = the k population meansareequal (11 = pp .. = pk)

Sampling distribution of between category variance

within category variance

is a Fisher F distribution with df = k-1; n-k

Application condition for F- test: within category variance should be the same for all
categories.

As above, use Cochran-C or a Bartlett-Box-F test for testing homogeneity of variance.

Alternative test: if homogeneity of variance tests are significant, use Non-
parametric Kruskal-Wallis test.

Example: neurological data (Ref?) : relationship between Cerebral Blood Flow (CBF)
and visuo-spatial neglect ?

NO NEGLECT MODERATE NEGLECT SEVERE NEGLECT
SUBJECT CBF SUBJECT CBF SUBJECT CBF
16,00 98,82 1,00 88,90 10,00 91,42
17,00 96,22 2,00 82,66 11,00 91,64
18,00 98,84 3,00 94,44 12,00 87,34
19,00 100,56 4,00 91,70 13,00 88,06
20,00 102,96 5,00 90,38 14,00 90,72
21,00 95,84 6,00 95,40 15,00 91,90
22,00 95,62 7,00 99,02

23,00 92,96 8,00 90,86

24,00 100,66 9,00 92,14

25,00 100,24

26,00 102,40

27,00 94,92

28,00 99,74

m1 98,44 m2 91,72 m3 90,18
s1 3,07 s2 4,57 S3 1,97

2 Demeurisse, G., Hublet, Cl., Paternot, J., Colson, C. and Serniclaes, W. (1997) “Pathogenesis of
subcortical visuo-spatial neglect. A HMPAO SPECT study” Neuropsychologia. 35, 731-735.
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Homogeneity of variance tests are NS (See SPSS Output 6.5). ANOVA can be used
and shows that relationship between CBF and neglect is S (F(df=2,25)= 16.03;
p<.0005).

o Example of Kruskal-Wallistest

Relationship between pregnancy duration and environment (in 4 categories, from town
center=1 to periphery =4). See SPSS Output 6.8.

As homogeneity tests are highly significant (p<.0005) , we check the apparent
significant relationship between pregnancy duration and environment (p=.017) with
Kruskal-Wallis test.

Conclusion : relationship between pregnancy duration and environment is NS
(p=0.20).
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e Contrasts between means

If ANOVA is significant, not all the differences between means are necessarily significant.
Tests of differences between individual means or between specific combinations of means
called”contrasts” are then possible.

A "contrast" is any combination of means or proportions of the form:

contrast = X cjm; with X Cj =0

Examples:
0.5*mq1 - 0.5* my is a contrast

mq - mp2 is a contrast

2*m1 - m2js NOT a contrast

Contrast coefficients: these are the Cj scaling values.

Contrast types:

“DEVIATION-last” contrast (default option)= each level of the factor except the last is compared to
the grand mean

“DEVIATION-first” contrast = each level of the factor except the first is compared to the grand mean

“SIM PLE-last” contrast = each level of the factor except the last is compared to the last level

“SIM PL E-first” contrast = each level of the factor except the first is compared to the first level

“DIFFERENCE” contrast = each level of the factor except the first is compared to the mean of previous
levels

“HELMERT” contrast = each level of the factor except the last is compared to the mean of subsequent
levels

“REPEATED?” contrast = comparisons between adjacent levels.

Example: with the CBF-neglect data taking simple-first contrasts allow to compare
mean CBF for each of the two neglect categories to CBF of the no-neglect category
(coded 1, hence first category). (see SPSS Output 6.5).

Contrast coefficients show that the -6.72 difference between mean CBF of neglect
category 2 vs. 1 (moderate neglect vs. no neglect) is S (p=.00014).

The -8.26 difference between category 3 vs 1 (severe neglect vs. no neglect) is also S
(p=. 00006).




[80 W. SERNICLAES - Public Health School ULB |

Comparison between the moderate and severe neglect are obtained by taking repeated
contrasts (SPSS Output 6.6) which shows that the mean CBF difference between
degrees of neglect is not significant (p=.40573).

e optionsfor confidence intervals when testing multiple contrasts

There are 3 options for confidence intervals when testing multiple contrasts (all
pairwise contrasts in SPSS-ANOVA, see “POST-HOC”):

“INDIVIDUAL” (default option): the p value is not corrected

“BONFERRONI”: the p value is corrected for the number of contrasts tested; this is
achieved by taking a p-value corresponding to .05*number of comparisons (.05*3 =
.15 in the CBF-neglect example)

“SCHEFFE”: the p value is corrected for testing all possible contrasts.

Example: changing the options for confidence intervals with the CBF-neglect data
taking simple-first contrasts (see SPSS Output 6.7).
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e Chi-square and Fisher-exact testsfor a difference between 2
proportions

The relationship between two related categorical variables can be represented in
frequency tables with one variable in line and the other in columns. Each variable can
display two or several categories and the complexity of the table is measured by the
number of possible sources of independent variation inside the table, or degr ees of
freedom (DF). The 2 by 2 table with 2 categories for each variable is the simplest one.
A 2 by 2 table has only 1 DF because for a given sample size and a given pattern of
marginal frequencies, there is only free frequency inside the table. Knowing the
frequency of 1 out of the 3 inner cells allows to know the 3 other ones.

We saw that conformity of a proportion to a population value can be tested by a
Pear son Chi-square. This test can also be used for testing differences between 2
proportions. Expected frequencies for this application of Chi-square are calculated
from the data. They correspond to the frequencies that would be obtained in each
sample if there were no differences between the two sample proportions.

Null hypothesis(Ho): P1=P>

(Or-Ey)’

¥2 (DF=1) = 2
=

where O; are observed frequencies and E; are expected frequencies
Ei= linetotal* column total/grand total

Application condition: at least 80% of the expected frequencies (E,) must be larger than or
equal to 5

Alternativetest:  Fisher Exact Probability test.
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Example: effect of sex of newborn on proportion of low-weight at birth (below 2.5kg).

See SPSS Output 6.9

Data: n=1095
boys nl =594 prop(loweight) = 125 /594 = 21 %
girls n2= 501 prop(loweight) = 95 /501 = 20 %

No cells with expected frequencies lower than 5 (Min. E = 26.712). We can use the
chi-square test. (otherwise we should have used the Fisher exact test, also given in
SPSS output).

Chi-square (df=1) =.734 ; NS (p=.39)

Conclusion: There is more than 5 % chance that the higher proportion of low-weight
at birth for girls vs. boys (10.0 vs 5.5 %) is due to random variation (sampling
variation). Therefore we conclude that the proportion of low-weight births does not
depend on sex.
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o Chi-squaretest for differences between several proportions

Instead of a 2 by 2 table we now have a 2 by k table, where k is the number of
samples. The complexity of the table is measured by the number of possible sources
of independent variation inside the table, or degrees of freedom (DF). The 2 by 2
table with 2 categories for each variable is the simplest one. A 2 by 2 table has only 1
DF because for a given sample size and a given pattern of marginal frequencies, there
is only free frequency inside the table. Knowing the frequency of 1 out of the 3 inner
cells allows to know the 3 other ones. A table with 2 lines and 3 columns (or just the
same 3 lines and 2 columns) has 2 DF because it is possible to deduce all cell values
from 2 out of them, not less. A general rule for calculating DFs is to take the
following product:

DF = (L-1)*(C-1)

L= number of lines in table (say predictor’s categories)
C=number of columns in table (say dependent variable categories).

For each DF there is a corresponding Chi-square, the formula remaining unchanged..
Only DF change which means that threshold value for significance gets larger as DF
increase (check in Table).
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Example of Chi-square between several proportions ( from Colton p.179).

A B AB O Total
THR+ 32 8 6 9 55
THR- 51 19 5 70 145
Total 83 27 11 79 200

DF = (2-1)*(4-1) = 3

As number of cells with expected frequencies lesser than 5 is lesser than 20% (12.5%,
see SPSS Output 6.10) Chi-square is applicable. Relationship between bloodgroup
and throembolism rate is significant (p<.001).

e contrasts between proportions

Pairwise differences between proportions can also be tested by Chi-square. More
generally, contrasts between proportions can be tested by Chi-square. Contrasts are
defined exactly in the same way as for means:

contrast = X cjpjwith £ ¢j=0

In SPSS, contrasts between proportions are not provided automatically in Crosstabs
Command. We will see later (Chapt. 7) how to obtain automatic contrasts with the
Logistic Regression command.
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Chapter 7. Univariate Regression

taxonomy of bivariate relationships
Linear regression

Non-parametric tests

Logistic regression




86 Willy SERNICLAES - Public Health School - ULB

e taxonomy of bivariate relationships

A common issue in scientific research is to see if there is a relationship
between two or several variables. Consider the following examples with two
variables.

Examples involving bivariate relationships.

(I) Does weight at birth depend on sex ?

(I1) Does the rate of low-weight at birth of depend on sex ?
(111) Does systolic pressure depend on age ?

(IV) Is low-weight at birth related to skull perimeter ?

Some of these variables are quantitative (weight at birth, systolic pressure,
age). Others are categorical (sex, low-weight at birth). But in each example
the question is to know whether one variable depends on the other. In
statistical terms:

() whether mean weight at birth is different for females vs. males;

(I1) whether proportion of low-weight at birth is different for females vs. males;
(111) whether systolic pressure is correlated with age;

(IV) whether low-weight at birth is correlated to skull perimeter.

Differences between means and proportions were treated in the previous
chapter. In this chapter we will consider regression between 2 variables.

variable types | description statistical models
(independent-

dependent)

difference between means
example (1)

categorical -
guantitative

e ANOVA (or t-test) for
means

categorical -
categorical

difference between proportions
Odds Ratio (OR)
example (Il)

e Pearson Chi-square
e -2LL Chi-square for
logistic regression

guantitative - | correlation coefficient (R) e ANOVA (or t-test) for

guantitative

example (Ill)

linear regression

guantitative -
categorical

Odds Ratio (OR)
example (IV)

e -2LL Chi-square for
logistic regression

® Linear Regression
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Linear regression consists in predicting of the value of a quantitative variable
with another quantitative variable with the help of a linear equation. In order to
obtain a linear equation which provides the "best" description of the
relationship between y and x (see Fig.7.1 scatter diagram), least square
estimations of the slope of the line (symbol b, also called "regression
coefficient”) and of the intercept (symbol a) are taken. These LSE minimize
the squared differences between the observed values (y) and the predicted
values (y').

The regression equation does not provide a measure of the strength of the
linear relationship between the variables. The slope of the regression line
cannot be used in this purpose because it depends on the variances. The
slope (b gets smaller either when the variance of x gets larger or when the
variance of y gets smaller. (In other words, the higher the sleszy ratio the
smaller the regression coefficient). The latter is thus not a good index of
relationship between the variables because it depends on the units of
measurement. The correlation coefficient (symbol R) provides a measure of
strength of relationship which is independent of the variances.The R does not
depend on measurement units and varies between -1 and +1.

+1 indicates a perfect linear relationship
0 indicates the absence of relationship

-1 indicates a perfect inverse linear relationship

The r does not give a proportionnal measure of relationship. This is given by
taking R2 (which is lower than r except for r=0 or r=1). R? IS the proportion of
variation of one variable which is explained by the other, or proportion of
explained variation..

The R gives an index of LINEAR relationship. A strong curvilinear relationship
is always possible even with r=0 .
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Plot of Syst. Pressure with Age
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Fig.7.1 Relationship between age and blood pressure (from Colton, pp.191 &
192).
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Linear Regression

Equation y' =a + bx

where y and x are two gquantitative variables
y IS the dependent variable
y' is the linear estimation of the “dependent variable”

X is the “independent” variable

Residual SS > (Yi - V)2
Explained SS S (i - my)2
Total SS S (yj - my)2

Least squares estimations

2 (Xi -my)*(yj -my)/(n-1)  covariance (x,y)

X (xj -my)2/(n-1) variance (X)

my =a + b my
a = my — b*my

y’ = my— b*mx + bx
Equation y' = my + b (x-my)
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Correlation Coefficient

covariance (x,y)
R =

\ variance (x)* variance (y)

Proportion of Explained variation
T (y'i - my)2 explained SS

X (yj- my)2 total SS

Example: prediction of systolic pressure as a function of age (see Colton,
p.189, for a sample of 33 women)

y = systolic pressure in mm Hg
X =age in years
y'= linear estimation of pressure from age.

b = 1.2 mm Hg per year of age
a=381.5mm Hg
predicted pressure = 138.6 + 1.2*(age - 46.7)

where 138.6 = mean pressure and 46.7 = mean age

r=.72 and r2=.52, which means that 52% of blood pressure variation is
explained by age differences, and vice-versa.
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p=010 o= 10,50 "|

b= —0.90 p =099

Fig. 2.4 Scatter plots showing examples of correlation. The scales and origin of the
t axes are irrelevant (see text) and are thercfore not shown,
from R.J.

Barlow "Statistics"™ J.Wiley, Chichester 1989,
p.-16

Fig. 7.2: Correlation strength.
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e test for Linear regression

Purpose: is the correlation due to chance only or is there some
correlation in the population

t-test and ANOVA for correlation

Observed correlation = R

Null hypothesis (Ho) = p=0

Sampling distribution of R

V(1-R2)/(n-2)

is a Student's t distribution with df = n - 2

Alternatively sampling distribution of R2 explained SS

(1-R?)/(n-2) _ residual SS/(n-2)

is a Fisher F distribution withdf =1; n -2

Application condition for F test :

¢ Relationship should be fairly linear.

e Scatter distribution should be free of deviant values points located outside
the bulk of the scatter diagram because they have larger effects than others
on R value.

¢ Residual y variance should be fairly constant for the different x values: no
outliers (“homoscedasticity” requirement).

Alternative nonparametric test
Kendall's Tau (z ) coefficient: is only based on ordinal information.

The Hq is the absence of any relationship between rank orders when subjects

are separately classified as a function of each variable. Then there is 50 %
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chance for any two subjects to be classified in the same order on both
dimensions.

The calculation of Kendall t coefficient is based on the difference between the
number of agreements and disagreements between classifications. For small
samples (n smaller than 30), the type | error is obtained from specific sampling
distributions (Siegel & Castellan, 1988, Tables R). For larger samples, the

sampling distribution can be approximated by a Normal deviate (z value).

e Examples for Linear regression tests

Example 1: bloodpressure-age data
see SPSS ouput 7.1

Pearson R =.72 (n=33)

tvalue (df=31) = (.72)/N(1-.72?)/31 = 5.78 (S at p <.001)

F value (df=1; 31) = (.72?)/(1-.72?)/31 = 33.37 (S at p <.001)

Application condition: scatter (see Chapter 4) shows relation is fairly linear,

without deviant points. Residual analysis (SPSS output) does not reveal
outliers more than 3 SD apart.

Example 2: data for which Pearson R is not relevant.
Correlation between cerebral bloodflow in two different cerebral regions
(n=28).

See SPSS Output 7.2
Pearson R =0.44 and is significant (S at P=.018) but this is due to the outlier

with low CBF in both regions, outside the bulk of the data. Kendall t =0.19 is
NS (p=.16).
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» Linear Regression: guidelines

The output of the correlation procedure can distorted by: non-linearity, deviant
cases, influential cases, colinarity (among others).

Non-linearity is detected by fitting the data with a quadratic function; a non-
linear regression is suspected if the latter is visibly different from a straight
line. Non-linearity can deflate the R. Solution: use a nonlinear transform of the
X or Y variables (log, or exponential). Growth curves are typically exponential.
Taking the logarithm of age allows then to linearize the regression.

Deviant cases are detected by examining the differences between observed and
predicted values (or “residuals’) scaled in number of SD (Zresiduals). ZResiduals
larger than 3 can either inflate or deflate the R, although their effect depend on the
sample size (the larger the sample, the more extreme the residuals have to be for
having substantial effects). An exampleis given below.

Influential cases can aso inflate the R. They can be detected by comparing the
residual with the “deleted residua”, which isthe residua calculated for a case when it
isnot included. The caseisinfluential if the differenceisfairly large. Another way of
detecting influential casesisto examine Cook’s distance, which considers the changes
in al residuals when the case is omitted. Influentia cases contribute to inflate the R.
An exampleis given below.

Calinearity makes the selection of two (or severa) predictors hazardous. Colinearity is
detected by a high R? between one of the predictors and the other ones, or just the
same, by alow “Tolerance” (1-R?). Colinearity means that different predictors explain
much the same part of the variance of the independent variable. It can be avoided by
taking only one of the correlated predictors (e.g.: only the number of living children,
not gestity , parity ...). Another solution is to create a new variable which combines
the different correlated predictors. The formulafor the linear combination can be
based on “Factorial Analysis”.
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Case Number Std. Residual SYSTPR1 Predicted Residual

Value
96 -5.687 128 208.31 -80.31
250 3.079 178 134.52 43.48
262 3.273 210 163.78 46.22
272 3.053 184 140.88 43.12
220
[=]
200 + o
180 = g
[=]
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140 4
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120 4
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& 100 o
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40 60 80 100 120 140 160 180 200
DIASTP1
220
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180 {
160 4
140 4
120 4
—
& 100
'—
n
& 80 _ _ _ _ _ _ _
40 60 80 100 120 140 160 180 200
DIASTP1

Example of deviant case. Relationship between diastolic pressure and systolic pressure in a
sample of 295 male adults. A deviant value appears in the original data (upper figure),
seemingly due to an inversion between the two measurements. The deviant value is excluded
in the lower figure. The R? increases from 0.24 with the deviant value included to 0.35 after
excluding this value.
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residual deleted Cook’s
residual distance
-0.29 -0.33 0.00
-5.50 -17.03 3.26
-2.38 -2.72 0.02
0.42 0.49 0.00
-3.93 -4.62 0.05
7.01 7.89 0.12
1.78 2.57 0.03
8.60 10.98 0.43
-5.73 -6.87 0.13
NEGLECT: 1 NEGLECT: 1

10

100

ROI4
RO

Example of influential case. Relationship between bloodflow in two brain aeras in a sample
of 9 patients suffering from cognitive neglect after stroke. An influential value appears in the
original data (left figure). The value is quite visible on graph as well as in the table of residual
values: the deleted residual® is much larger than the residual and Cook’s distance? is large.
This value is excluded in the lower figure. The R? decreases from 0.46 (S, p=.046) with the
influential value included to 0.0007 (NS, p=.95) after excluding this value.

! The “deleted residual” isthe residual calculated when the case is not included.
2 The“Cook’sdistance” considers the changesin all residuals when the case is omitted.
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e Logistic Regression

Logistic regression can be used for predicting of the value of a categorical
variable with a quantitative variable. Regression is not linear in this situation.
Let us take the case of single proportion corresponding to a binary variable.
The relationship between the proportion and the quantitative variable is
generally S-shaped.. The proportion changes slowly for extreme values close
to either O or 100% and changes more and more rapidly as values get closer
to 50% (Fig.7.3). S-shaped curves can be fitted either with Logistic
functions or with Cumulative Normal functions. Any Logistic function can
be transformed into a linear function by transforming the proportion into a
Logit. Any Cumulative Normal function can be transformed into a linear
function by transforming the proportion into a Probit. Logistic fitting is often
preferred because Logistic equation is much more simple than the
Cumulative Normal.

LOGISTIC function and LOGIT

e’
P’(disease / x) =

e+ 1

wherey’ = a+ bx = logit P’ =In [P’/(1-P’)]

Examples:
logit0.5=0
logit 0.9 = 2.197

logit 0.1 =-2.197
logit 0.95 =2.944

MAXIMUM LIKELIHOOD FITTING

The fit of the Logistic function to the observed proportions is based on
“likelihood” calculations.

The likelihood of an observed proportion is the probability to find this
proportion in a sample for a given theoretical value.

For example, with a theoretical value of .60 and a sample of size 10, the
likelihood of any proportion p is the probability to obtain p in a sample of
size 10 as given by the Binomial formula.
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Thus:

likelihood (.7) = 101/ 713! (.6) (.4) > = .2150
likelihood (.6) = 101/ 6141 (.6)°(.4) % = 2508

The likelihood of an observed proportion gets larger when the theoretical
proportion is closer.

If there is only one observed proportion, and if we are free to choose any
theoretical value (suppose we just want to estimate the “best” population
value for an observed proportion), then the best “likelihood” estimation of
the theoretical value is simply the observed value (in the above example: .6).
This value gives the highest possible likelihood.

Now if there are several proportions and if we want estimations which are
linked to some quantitative variable by a logistic curve, then the best
possible “likelihood” estimations are those who give the highest joint
likelihood.

Joint likelihood is simply the product on individual likelihoods:

JOINT LIKELIHOOD: L(P'1 P’5 ..... P’n)= L(P’)*L(P'2) ... *L(P’n)

Summary: fitting of a logistic curve to proportions as a function of some
predictor (X) is achieved by calculating P’ values which jointly maximize
their likelihood.

Comparison with linear regression: fitting of a linear regression curve was
obtained by maximizing explained variance (or minimizing residual
variance). It can be shown that this procedure is a special case of maximum
likelihood fitting, but which can only be used for quantitative dependent
variables, not for proportions.
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PROBABILITY of LOW WEIGHT at birth
as a LOGISTIC function of SKULL perimeter alone

P (LOW WEIGHT )= €' /(" +1)
where Y’ = 22.3 - 0.71*skull = 0.71 *(31.4 —skull)
Y'is the "LOGIT" of the Probability

Fig.7.3 LOGIT of P(LOW WEIGHT) at birth as a LINEAR function of
SKULL perimeter alone
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Logistic Regression tests with a gquantitative predictor

Null Model (Model 0): Logit p(y) = o
X1 Model (Model 1): Logit p(y) = a + B1X1

Null hypothesis (Hp) = B1=0

is tested by comparing likelihood for Model 1 with likelihood for Model O.
Likelihood is always better for Model 1 (because a predictor is included).
But is the difference large enough for being significant ?

For assessing significance, we take the “improvement Chi-square”
=- 2In(Lo/Ly)
where

L1 = Likelihood with Model 1
Lo = Likelihood with Model 0

Sampling distribution of this expression is approx. Chi-square distribution with df

=1 (as the model contains a single predictor).

Alternative test of improvement takes less computer processing time:
WALD approximate XZ test
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Application condition :the logistic curve should fit the data. This is the case
“Hosmer-Lemeshow” Chi-square is not significant.

Example of logistic regression: example with a quantitative predictor: Effect of
skull perimeter on weight at birth in two categories .
see Output 7.3

Hosmer-Lemeshow Chi-square is not significant (p=.46), so we can use the
Logistic model.

Slope is negative (b=-0.71) which means that proportion low-weight at birth
diminishes with increasing skull perimeter (presence of low-weight at birth is
coded 1). OR =.492 (=exp(-.71)) which means that odds of loweight gets
49.2 % lower for each 1 cm increase of skull perimeter. As the constant is
22.3 the skull perimeter for which a 50% proportion low-weight is expected
can calculated as follows:

50% is O in logits

0 =22.3-0.71*skull

skull = 22.3/0.71 = 31.4 cm (see Fig.7.3).

Both Improvement Chi-square (X2(df=1)= 227) and Wald test (X?(df=) =148)
are highly significant (p <.001).

Conclusion: relationship between skull perimeter and low-weight at birth is
highly S ( p <.001). As expected, proportion low-weight babies (below 2.5 kg)
is inversely related to skull perimeter.
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e | ogistic Regression testswith a categorical predictor

Comparing proportionsin 2 samples can also be handled by Logistic regression. Take the
example of proportion decease at birth as afunction of sex. Sex, as any dummy variable, can
be assigned two numerical values (0 and 1 for instance) and can then treated as an elementary
quantitative variable. We can therefore perfectly use Logistic regression for describing the
relationship between a proportion (say rate of decease) and adummy variable (say sex). The
model writes as follows:

logit p (decease) = a + B*(Sex)

where sex takes values O or 1.

The interest of proceeding in thisway isthat it makesit possible to combine categorical and
quantitative predictors within the same model (see Chapter 9). For the while, using the Logistic
model for proportions has the practical advantage of giving automatic tests for contrasts
between proportions in SPSS.

e Coefficients

Delta percentage, RR (constant = 2 here), OR the best one for research (see Fleiss, pp. 90...).

Up to some 10 %, OR (Logistic function) can be approx. by RR (logarithmic function).

Interest of RR: easier to understand, way open to other epidemiological coefficients (see RL).

P Logit (P) RR |loge OR |[OR

50% 0/50% vs 25% 2 1,10 3,00

25% -1,10

20% -1,39(20% vs 10% 2 0,81 2,25

10% -2,20{10% vs 5% 2 0,75 2,11
5% -2,94
4% -3,18|4% vs 2% 2 0,71 2,04
2% -3,89(2% vs 1% 2 0,70 2,02
1% -4,60




Willy Serniclaes- Statistical Methods - Master in Public Health Methodology - Chapter 7 103

e Contrasts and Odds Ratios

But there more about this. With a categorical predictor, the slope (B) is directly related to the
Odds Ratio (O.R.).

Odds Ratio (OR)

alc a/b
OR = ad/bc = =
b/d c/d

Relationship between ODDS RATIO and Logistic Regression
coefficients

IF E is coded (0,1) difference between E+ and E- correspond to 1
unit

In(OR) = Ln (a/b) - Ln(c/d)

= logit (p(D+/E+)) - logit (p(D+/E-))
=increase logit D for 1 unit increase of E = B¢

Thus In(OR) = Be
OR = efF

IF E is coded (-1,1) difference between E+ and E- correspond to 2
units

Ln(OR) = logit (p(D+/E+)) - logit (p(D+/E-))
=increase logit D for 2 units increase of E
= ZBE

Thus In(OR) = 2p¢

OR = e**
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Example with a 2 by 2 table: association between perinatal health & mother's
age

diseased healthy
age < 20 years 10 40 50
age>20 years 15 135 150
25 175 200

O.R. =10*135/40*15 = 2.25
See SPSS Output 7.4 for comparing OR and slope of logistic curve with two
SPSS commands (Crosstabs and Logistic Regression)

e Contrastsfor several proportions

Just as for means, we can test different kinds of contrasts between proportions (see previous
Chapter). Logistic regression allows to do this. Contrasts available in SPSS Logistic Regression
command are the same as those in ANOV A General Factoria plus afurther one: INDICATOR
contrast. With indicator contrast any category can be taken as reference and pairwise differences
between reference and all other categories are tested.

Contrast types: the same as for ANOV A-means plus “indicator” type which is specific
to Logistic-proportions. Interest of indicator contrasts for categorical predictors with
DF > 1 (more than 2 categories) because any category can be taken as reference (as
“indicator”). Thisis not possible with simple contrasts, which can only take the last or
thefirst category as reference.

“DEVIATION-last” contrast (default option)= each level of the factor except the last
is compared to the grand mean

“DEVIATION-first” contrast = each level of the factor except thefirst is compared to
the grand mean

“INDICATOR” contrast = each level of the factor except one taken asreference is
compared to the reference

“SIMPLE-last” contrast = each level of the factor except the last is compared to the
last level

“SIMPLE-first” contrast = each level of the factor except the first is compared to the
first level
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“DIFFERENCE” contrast = each level of the factor except the first is compared to the
mean of previous levels

“HELMERT” contrast = each level of the factor except the last is compared to the
mean of subsequent levels

“REPEATED” contrast = each level of the factor except the last is compared to the
next level

Example of indicator contrast with several proportions. bloodgroup- throembolism (see SPSS
Output 7.5). With bloodgroup AB which has the highest THR rate as indicator (group coded 3),
contrasts are NS for bloodgroup A (p=-3156) and for B (p=.1557). Only contrast with
bloodgroup O is S (p=.0015).
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Chapter 8. Sanpling Met hods

8.1 Concepts and net hods

There are two key concepts in estimation: bias and precision.
The primary requirenent for the obtention of unbiased estinates
is that the popul ation sanpl ed corresponds to the target
popul ati on (see Introduction). Cassical instances of bias are
"Berkson's fallacy" for case-control studies carried exclusively
in hospital and out-of-sight bias in follow up studies

(Kl ei nbaum et al., American J. of Epidem ol ogy, 1981, 452-463).
Berkson's fallacy is due to the fact that the risks of
hospitalisation can conbine within patients, which gives rise to
a selection bias. Qut-of-sight subjects in foll owups do not
occur independently of other characteristics, and can therefore

al so have filtering effects.

Exanple of bias in the realization of a survey: Sanple of
househol ds in Syracuse (USA) in 1930-1931: Distribution of
househol ds according to size, in the original sanple and in the
census tract. Househol ds of one were not incuded in the survey
(fromKiser (1934) in Yates,F. R S. (1981) "Sanpling Methods for
Censuses and Surveys" 4th edition, H gh Wconbe, Bucks, Engl and:
Ch. Giffin; p.11)

Nunber Oiginal sanmple Census tracts

i n househol d Nunber % Nunber %
2 254 19.4 1762 26. 8
3 338 25.9 1745 26.5
4 307 23.5 1438 21.9
5 201 15. 4 853 13.0
6 106 8.1 388 5.9
7 46 3.5 208 3.2
8 25 1.9 96 1.5
9 and nore 29 2.2 86 1.3

As can be seen, the households with 2 nenbers are
underrepresented. This arises fromthe fact that wonen w t hout
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children are nore often absent and enunerators did not return
to these places to collect the information.

The precision of the estinates depends on their variance and on
the size of the sanple. Gven the tradeoff between these 3
paraneters, the size of the sanple can be specified beforehand
if the required precision is provided and variance is estimated
on sone ot her grounds.

Choi ce of the nethod:

Si npl e random sanpl i ng: each indivi dua
is extracted at random and i ndependently of the others.

Systematic sanpling: an individual is
extracted at regular intervals.

Stratified sanpling: the population is
partitioned into groups, or "strata", and individuals are
thereafter sanpled within each stratum

Cluster sanpling: clusters of
i ndi vidual s, grouped as a function of spatial or tenpora
proximty, are sanpled first and individuals are thereafter
sanpl ed within each cluster

Al t hough SRS provides a sinple basis for theoretica
devel opnents, it also has several drawbacks. Sone of these are
practical:

- SRS requires the enuneration, and hence
the identification, of all the units of the population. This is
not possible if there is no available file containing all the
units.

- the itens of the sanple can be largely
di spersed, which is tinme consum ng
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O her problens are of theoretical nature, in the sense that they
can give rise to biases:

-sone subset of the popul ation,
characterized by a specific feature which may affect the
vari abl e under study, may be underepresented, or
overrepresented, in the sanple (because there is no direct

control).

8.2 Sinple random sanpling

A sanple of n elenents extracted froma given population is a
"SI MPLE RANDOM SAMPLE" if the extraction procedure is conceived
in such a way that all the possible sanples of n el enments have
the sane probability to be extracted fromthe popul ati on

Let us consider a finite population of N elenents and a sanple
of n elenents which are extracted w thout replacenent fromthe

popul ati on. The total nunber of possible sanples of size n is:

T=y=N!/ nl (Nn)!

and, for the sanple to be sinple and random the probability of
extracting a given sanple of size n nust be :

This condition will be fulfilled if elenents are extracted at

random and i ndenpendently of each other fromthe popul ation.

Mat hermat i cal devel opnent

I f each el enent of the sanple is taken at random fromthe

popul ation, the probability of an elenent being selected is 1/N
for the first, 1/(N-1) for the second, 1/(N-2) for the
third..., 2/ (N-n+1l) for the last elenent. If the elenents are
extracted i ndependently, the probability that the n elenents are
extracted in a specific order is, on the basis of the law for
conbi nati on of independent events:
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1 1 1 1 (N-n)!

* * * -

N N-1 N-2 N-n-1 N !

As there are n! possible orders in which the sane el enents of
t he popul ation can enter the sanple, the probability of
extracting a given sanple of n elenents is:

nt (Nn) '/ N!

Procedure for sinple random sanpling

A list containing the N elenents of the population is
constructed. This is the "SAMPLI NG BASI S*. Each el enent is given
a nunber from1l to N. The n elenents of the sanple are extracted
by using a table of random nunbers or a conputer with a random
nunbers gener at or.

Random nunber generation: see SPSS or Epilnfo.
8.3 Systenmmtic Sanpling

The idea is to subdivide the population into zones, a single
item being extracted at randomw thin each zone. The main
advantage is that the sanple is nore uniformy spread over the
popul ati on.

For a finite population, n zones each containing k itens are
created (k = Nn = "SAMPLI NG | NTERVAL"). In each zone, the ith
itemis extracted, i being taken at random between 1 and k.

Exanpl e: Take a systematic sanple of 9 students in a classroom
of 27. The sanpling interval is 27/9 = 3. Take a nunber between
1 and 3 at random Suppose 2 is taken. Extract students nunber
2, 5, 8 11, 14, 17, 20, 23, 26.

Anot her advant age of systenmatic sanpling is that the popul ation

need not to be known before the initiation of the sanpling.
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Exanpl es:
In a study on intensive care, we can, for instance, decide to
t ake one patient over 10 to enter an energency room

Systematic sanpling can be a source of bias in case of cyclic
variations. This is especially the case if the zone size

corresponds to the cycle size.

Exanpl e of bias wth systematic sanpling: in a conparative study
on hospital work in different departnents, a zone size of 7
days, from Sunday to Sunday, would certainly overenphasize the
degree of activity of the energency room
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8.4 Stratified sanpling

8.4.1 A stratumis a subgroup of the population, in which the

I ndi vi dual s share a common characteristic which is or could be
related to the variable under study. After the popul ati on has
been subdivided into strata, individuals are extracted at random
within each stratum This allows to control a possible biasing
effect fromthe confoundi ng characteristic. Indeed, random
sanpl i ng al one does not guarantee that distribution of the
confounding feature in the sanple will be equivalent to its

di stribution in the population. On the contrary, sanpling
variation wll also affect the confounder, which nmakes that the
corresponding categories will be either underepresented or
overepresented in the sanple, to a degree which depends on
chance. Subdividing the population into strata allows to

neutralize the sanpling variability of the confounding feature.

Exanple: In a study on the Reception of Patients in the
hospital, individuals belonging to different communities are
extracted separately fromthe population, in order to contro
the proportion of people fromeach comunity in the sanple.

D fferent sanpling nethods can be used for extracting the itens

i n each strata: sinple random sanpling, systematic sanpling...

In the previous exanple: for each comunity, patients can be
extracted at random and i ndependently fromthe hospital file
(SRS), or a specific proportion of those |leaving the day after
can be taken each day during one week (systematic sanpling).

Two different approaches can be taken for specifying the nunber

of itenms per stratum equal or proportional allocation. Equa

al l ocation neans that the same nunber of itens is taken for each
stratum which makes that the distribution of the confounding
feature in the sanple is generally not representative of the
popul ation. This nmethod is preferable when the aimof the study
Is to make conparisons between strata, rather than obtaining an
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estimati on of the nean value across strata. Indeed, the
statistical power of conparisons tests will be higher with equa
si zed sanpl es.

On the contrary, proportionnal allocation should be used if
the maj or objective of the survey is to provide a popul ation
estimati on of a nean value, or of the proportion of sone other
attribute than the one used for stratification. Indeed, the
practical task of collecting the sanple and the fornulas for
estimating paranmeters will be sinpler. Concerning the formul as,
the sanples will be "self-weighted", which neans that weighting

coefficients will not be required for the obtention of unbiased

esti mat es.

In the previous exanple on the Reception of Patients; let us
suppose that there are 4 communities with rel ative frequencies
of 60 % 20 % 15 %and 5 % In order to make conpari sons

bet ween the degrees of satisfaction between conmunities, the 4
subsanpl es shoul d have the sanme size (e.g. 500 for a total of
2000). On the contrary, if the primary aimof the study is to
estimate the overall degree of satisfaction, the subsanples
shoul d be proportionnal to the popul ation frequencies (e.g.
1200, 400, 300 and 100 for a total of 2000). This wll also
facilitate the practical realization of the survey.
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8.4.2 Several sinultaneous stratifications can be perforned,
each correponding to a possible confounder. This is called
"MJULTI PLE STRATI FI CATI ON'

In the previous exanple on the Reception of Patients, the size
of the hospital can also be taken into account. For practica
reasons, hospitals can be grouped into 3 categories (according
to the size) and the nunber of patients per category can be
taken to be proportionnal to relative nunber of beds per
category. If these are of 30%for small or nean sized hospitals
and of 40% for |arge sized hospitals, then the sharing out of a
total sanple size of 2000, with proportionnal allocation between
hospital type and equal allocation between communities, is as
fol | ows:

Communi ty A B C D Tot .
smal | hosp. 150 150 150 150 600
mean hosp. 150 150 150 150 600
| ar ge hosp. 200 200 200 200 800

t ot al 500 500 500 500 2000
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8.5 Custer Sanpling

The primary interest of cluster sanpling is for investigating a
popul ati on which is highly dispersed. Instead of directly taking
I ndi vidual s at random from the whole population, it is first

di vided into mutual ly exclusive and exhaustive clusters (for
exanple: towns and villages). A sinple random sanple of clusters
is then extracted and individuals are thereafter taken within

t he sel ected clusters.

Several nethods are available for extracing the individuals in
the selected clusters. In "ONE STAGE" cluster sanpling, all the
i ndividuals of the cluster are taken into the sanple. In "TWOD
STAGE" cluster sanpling, individuals are sanpled out with the
hel p of one of the previous nethods (SRS, systematic sanpling,
stratification). Mire than two stages can be invol ved. For

I nstance, sanpling units could be villages at the first stage,
bl ocks of houses within the selected villages at the second
stage, households within the blocks at the third stage.

For two stage sanpling, the nunber of individuals within each
cluster can either be fixed, or taken with a "PROBABILITY
PROPORTI ONAL TO SAMPLE SIZE'" (PPS). (This is the sanme as for
stratified sanpling: equal or proportionnal allocation).
Exanpl e from Kaanugi sha, J., and Feksi, A T. (1988) “Determ ning
the preval ence of epilepsy in the sem -urban popul ati on of
Nakura, Kenya, conparing two i ndependent nethods not apparently
used before in epil epsy studi es” Neuroepidemology 7, 115-121.

See Method I, pp. 116-117.

e creation of 30 clusters of about 100 househol ds each

e starting list of all pupils in the first year of primary
education. Total nunber of pupils is 3043. Each pupil is
represented by a nunber, nane and school nane

e 30 pupils are selected by systematic sanpling. Sanpling
interval is 3403/30 = 113. First pupil is selected by SRS.
Second by adding 113 to first pupil’s nunber, etc...



[ 116 Willy SERNICLAES - Public Health School - ULB |

e starting household for each cluster is adjacent to the one of
sel ected children. A total of about 99 households are taken in
each cl uster.
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8. 6. Specification of sanple size
The nunber of observations to be collected depends on the ai m of

the study: to provide an estimation of the popul ation val ue or

to test a specific hypothesis.
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SPECI FI CATI ON OF SAMPLE SI ZE
METHOD: Si npl e Random sanpl i ng
VARI ABLE: Qualitative (proportion)
POPULATION: Infinite

AlM OF THE STUDY: Estinmation
NUVMBER OF SAMPLES: 1

Starting fromthe fornmula of the confidence interval, and
supposi ng that one has sone prelimnary idea about the val ue of
the proportion in the population (IT). Oherwi se, to put things

at worse take IT = .5.
I1( 1-1I71)
p t Zg ¥ N mmmm----
n
The precision, d = half of the width of confidence interval =
Con(1-1m)
Z o i A
n
and for a given precision, the sanple size is:
72X TI( 1-T0)
N = --=---c-caca---
d2

Exanpl e: suppose you know the rate of arthritism anong wonen
aged between 50 and 60 years is around 20 %in a given region.
How many subj ects should you take in order to estinate the rate
of arthritismwth a precision of 2% ?

(1.96)2%(.2)*(1-.2)

for a precision of 10%

(1.96)2%(.2)*(1-.2)

wi t hout any idea of the true proportion

(1.96)2*(.5) 2



| Statistical Methods - Master in Public Health Methodology - Chapter 8 119

SPECI FI CATI ON OF SAMPLE SI ZE
METHOD: Si npl e Random Sanpl i ng
VARI ABLE: Qualitative (proportion)
POPULATION: Finite (size N

AlM OF THE STUDY: Estinmation
NUVMBER OF SAMPLES: 1

Starting fromthe formula of the confidence interval,

where the expression in bold characters is the "finite

popul ation correction”.

If dis the required PRECH SION t hen:

and:

Notice that (1)for a very |large population, this formula becones
al nost the sane as the previous one, for infinite popul ations
(proof: divide each termby N);

(2)sanple size is lesser for a finite than for an infinite
popul ati on.

Exanpl e: suppose you want to estinmate the proportion of snokers
for the 500 nmedi cal doctors working in a hospital, w thout any

I dea of the true proportion. How many people should you take for
a precision of 10 % ?

Taki ng the | argest possible variance, which corresponds to a
proportion of one half:

500* (1. 96) 2*(.5)2

Wth EPI program (Statcal c/ sanple size/ Popul ation Survey)/
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Popul ation Survey or Descriptive Study Usi ng Random ( Not
Cluster) Sanpling

Popul ation Size : 500
Expect ed Frequency : 50. 00 %
Wor st Accept abl e : 40. 00 %
Confi dence Level Sanpl e Si ze
80 % 38
90 % 60
95 % 81
99 % 125
99.9 % 176
99.99 % 215
For mul a : Sanple Size = n/(1-(n/popul ation))

n = z*Z(TI(1- 1))/ (D*D)

Ref erence : Kish & Leslie, Survey Sanpling, John Wley & Sons,
NY/ see Epiinfo manual p.258.
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Si npl e random sanpl i ng

VARI ABLE: qualitative (proportion)
POPULATION: Infinite

AlM OF THE STUDY: Test of Hypothesis
NUVMBER OF SAMPLES: 1

Sanpl e size for hypothesis testing:

The investigator has to define the values of the 3 follow ng
paraneters at the start:

type | error (o)

type Il error () and hence the m ni nal
deviation fromthe null hypothesis (II; versus Ilp) to be detected
by the test. Usually, type | error is considered to be 4 tines
as serious as type Il error (Cohen, J.(1977) "Statistical Power
Anal yses for the Behavioral Sciences" New York: Academ c press).
Hence R = 4a, and for o=.05, R=.20 (zp=.84, caution unilateral
1)

the SD of the population = Ilp (1-TIlp).
Wth these ingredients in hand, the nunber of observations is :

where z, corresponds to o in the bilateral Normal table (if two
tailed test)

and zp corresponds to B in the unilateral Normal table (even for

two tailed test).

Mat hermat i cal devel opnent: if we take the m val ue which
corresponds to the threshold of rejection, we have:

lp - Mol
ZO S m e e e e -
\/Ho(l-no)/n
lp - 1y
Z e

\/Hl ( 1- H]_/ n
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El i m nati ng m by conbi ni ng these equations gives the above
f or mul a.

Exanpl e: the spontaneous rate of recovery is of .20 for a given
di sease (Ilg) and we want to detect a +.10 difference at |east
with type | error equal to .05 and type Il error equal to .20.

How many observations are required?
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Si npl e random Sanpl i ng

VARI ABLE: Qualitative (Proportion)
POPULATION: Infinite

AlM OF THE STUDY: Test of Hypothesis
NUVMBER OF SAMPLES:. 2

The size of one of the two sanples, the smallest one if the 2
sanpl es do not have the sane size, is:

[ /1zgy V(r+1l)n(1l-w) + /zg/ Vrmrp(1l-mq) + mo(l-m 2) 12

n stands for (mq + rmo)/(r + 1)

This is an approximative fornmula (for the exact one see Fleiss
p.44; also in Epiinfo, "cohort or cross-sectional” option and
equi valently with "unmat ched case-control"). r is for taking
account for unequal sanple sizes and is equal to ns/nq. For
equal sanple sizes r=1 (see fornula p.14- Table 7 in Leneshow et
al ., 1990)

Exanple: In a research on the Reception of Patients fromtwo
different ethnic communities in Hospitals which sanple sizes
shoul d be taken for assessing the differences in proportions of
"satisfied or not" with a precision of .1 if one comunity is 3
times |arger than the other, and assuming that, if there is a
di fference, satisfaction will be 10% higher in the | argest
comunity ?

[ 1.96 V 4(.575)(.425) + .84 ' 3(.5)(.5) +(.6)(.4)]2

= about 256

This is for the smallest community. For the largest n = 256*3
768, and the total is about 1024. (Wth the exact fornmula -
Epiinfo- 272 for the snmallest sanple and total =1088).

EPI - I NFO. STATCALC - SAMPLE Sl ZE & POWNER -
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then either COHORT... or UNMATCHED- CASE CONTROL

Values to be entered with the above exanple: 95% 80% 3 /1,
50% 0, 60%

Then for cal cul ation and saving: F5/ F4/ F6/ F10

Unnmat ched Cohort and Cross-Sectional Studies (Exposed and Nonexposed)

Sanpl e Sizes for 50.00 % Di sease i n Unexposed G oup

Di sease Ri sk Qdds Sanpl e Size

Conf . Power Unex: Exp in Exposed Ratio Ratio Unexp. Exposed Tot al
95.00 % 80.00 % 31 60.00 % 1.20 1.50 816 272 1,088
90.00 % " " 651 217 868
95.00 % " " 816 272 1,088
99.00 % " " 1,197 399 1,596
99.90 % " " 1,734 578 2,312
95.00 % 80.00 % " 816 272 1,088
" 90.00 % " 1,077 359 1, 436
95.00 % " 1,320 440 1,760
" 99.00 % " 1, 845 615 2,460
80.00 % 101 407 407 814
" " 2:1 612 306 918
3:1 816 272 1, 088
" " 4:1 1, 020 255 1, 275
5:1 1, 225 245 1,470
" " 6:1 1,428 238 1, 666

For mul a :m = Sqg{c(a/2)*Sgrt[(r+1)*PQ -c(1-b)*Sqrt[r*P1QL+P2Q2] }

[ (r*Sq[ P2-P1])

m = .25m *Sq{1+Sqrt [ 1+2*(r+1)/ (m r*Abs[ P2-P1])]}

Reference : Fleiss, "Statistical Methods for Rates and Proportions",

2nd Ed., WIley, 1981, pp. 38-45.
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SPECI FI CATI ON OF SAMPLE SI ZE
VETHOD: Si npl e Random Sanpl i ng
VARI ABLE: Quantitative (nean)
POPULATION: Infinite
AlM OF THE STUDY: Estimation
NUMBER OF SAMPLES: 1

Starting fromthe formula of the confidence interval, with sone
i dea about the popul ation variance (c2):

if dis the PRECI SION required, then

d = z4*o/ Vn

and:

Exanpl e: suppose you want to estimate the systolic pressure for
mal es aged between 18 and 22, with a precision of 10 nm Hg,
assum ng a standard devi ation of 15 nm Hg. How nany subjects
shoul d you take ?

(1.96 *15)2
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SPECI FI CATI ON OF SAMPLE SI ZE
METHOD: Si npl e random Sanpl i ng
VARI ABLE: Quantitative (nean)
POPULATION: Finite (size = N)
AlM OF THE STUDY: Estinmation
NUVMBER OF SAMPLES: 1

Starting fromthe formula of the confidence interval,

m + Zg ¥ N - o2/ n

where the expression in bold characters is the "finite
popul ation correction”.

if dis the PRECI SION required,then:

and:

Notice that for a very large population, this fornmula becones
al nost the sane as the previous one, for infinite popul ations
(Proof: divide each termby N).

Exanpl e: suppose you want to estinate the B.MI. with a
precision of 2 for children below 10 years of age in a village
where the correspondi ng popul ati on of children anounts 600,
supposi ng a standard deviation of 3 ?

600* (1. 96%3) 2
I R R L LR TR = about 8 subjects
600*(2)2 + (1.96*3)2
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Si npl e Random Sanpl i ng

VARI ABLE: Quantitative (nean)
POPULATION: Infinite

AlM OF THE STUDY: Test of Hypothesis
NUVMBER OF SAMPLES: 1

The investigator has to define the values of the 3 follow ng
paraneters at the start:

type | error (o)

type Il error () and hence the m ni nal
deviation fromthe null hypothesis (0 = p1 - Hg) to be detected
by the test

the SD of the population (o), a value which is
general |y unknown but can be estimated from previous
i nvestigations or with the help of a pilot study.
Wth these ingredients in hand, the nunber of observations is :

[o(/zqy + I2R/)]2

where zo corresponds to a in the bilateral Ntable (if two
tailed test)

and zp corresponds to B in the unilateral N table (even for two
tailed test).

Mat hermat i cal devel opnent: if we take the m val ue which
corresponds to the threshold of rejection, we have:

Im- ol
ZO Seeemmmmm-
o/ \n
Im- pql
ZR -
o/ \n

El i m nati ng m by conbi ni ng these equations gives the above
for mul a.
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Exanpl e: wei ght of babies. Suppose that in a further study we
want to detect a difference of +50 g fromthe present nmean (3251
g) which we take as pp. Let us take the SD of the previous
sanple (525 g) as estimate for o, and choose a .05 val ue both
for a and R.

( o(1.96 + 1.65) )2
= (mmmemm e ) = 1437 observations
( 50 )

For a difference of +20 g, n

n

about 8980 observati ons.

For a difference of 300 g, n about 40 observati ons.

For B = 20% n = 864
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Si npl e Random Sanpl i ng

VARI ABLE: Quantitative

POPULATION: Infinite

AlM OF THE STUDY: Test of Hypothesis

NUVMBER OF SAMPLES:. 2

The size of one of the two sanples, the smallest one if the 2
sanpl es do not have the sane size, is:

This is an approximative formula .r is for taking account for
unequal sanple sizes and is equal to np/nq, where ny is the size
of the | argest sanple. For equal sanple sizes r=1 (see fornula
p.39 in Lemeshow et al., 1990).

Exanpl e: for o=15, d=5 mm Hg, o=1% RB= 4% r=1

2*(15) 2*(2.57+1. 75) 2
ng = = about 337
5Z
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SPECI FI CATI ON OF SAMPLE SI ZE - SUMVARY TABLE
SI MPLE RANDOM SANPLI NG

PROPORTI ONS

Fi ni te Popul ati ons

Si ngl e sanpl e

N z,2 TI(1-10)
Esti mati on T
N d2 + z42 TI(1- 1)

Infinite Popul ations

Si ngl e Sanpl e

Z2*TI( 1-10)
Esti mati on N = —-cccmmeem -

Singl e sanpl e

Test [ I T
[ Mop-TTqp 12
Two Sanpl es
[ /2oy V(r+1)TI(1-TI) + /zpy NrIlq(1-I17) + IIp(1-
Mp) 12
TESt N = mmmmm s m e oo

ni
r =

= size of smallest sanple

na/ nq
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SPECI FI CATI ON OF SAMPLE SI ZE - SUMVARY TABLE

SI MPLE RANDOM SANPLI NG

VEANS

Fi nite Popul ati ons

Si ngl e sanpl e

Esti mati on N = cccmmmmm e mooo o

Infinite Popul ations

Si ngl e Sanpl e

Estimation n =----------

Si ngl e sanpl e

ni

Test N = e eeeee o
d2
Two Sanpl es
(r +1) o2 (lzgy +12p)2
TESt N = =-mmmmmmm s

rd2

size of smallest sanple
no/ nq
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Systematic sanpling

VARI ABLE: Qualitative or Quantitative

POPULATION: Finite or Infinite

AlM OF THE STUDY: Estimation or Test of Hypothesis
NUVBER OF SAMPLES: 1 or 2

Provi ded that the units of the population are ordered at random
in the list fromwhich systematic sanpling was taken, then
estimations for systematic sanple is equivalent to those for

SRS. Practically: do not assign a nunber to each item otherw se
there is no advantage versus SRS, but mx themfirst and then

extract at random (Exanpl e: students m xed in the classroon).
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SPECI FI CATI ON OF SAMPLE SI ZE
METHOD: Stratified sanpling

VARI ABLE: Qualitative (proportion)
POPULATION: Infinite

AlM OF THE STUDY: Estinmation
NUMBER OF SAMPLES: strata

Confi dence i nterval:

(752
P £ Zg v 2Pg *__

n

where Pg is the probability for an itemin the population to
bel ong to stratums

Exanpl e: suppose that a prelimnary survey shows that the rate
of arthritism anong wonen aged between 50 and 60 depends on the
region. The data are as foll ows:

Regi on Popul ati on rate of arthritism
A 65 % around 20%
B 35 % around 5%

How many subj ects should be taken in order to estinate the rate
of arthritismwith a 2% precision?

(1.96)2 [(.65)(.2)(.8)+(.35)(.05)(.95)]

= about 1158
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Stratified Sanpling; proportional allocation
VARI ABLE: Qualitative (proportion)

POPULATION: Finite (size N, strata of size Ng)

AlM OF THE STUDY: Estinmation

NUMBER OF SAMPLES: strata

Confi dence i nterval:

(N-n) L (ng/n) Ilg(1-Ilg)
p * Zq A
N n
where Ilg(1l-Ilg) is the variance per stratum

Sanpl e si ze:

N zg2 = (Ng/N) Tg(1-IIg)

Exanpl e: suppose that a prelimnary survey shows that the rate
of arthritismanong wonen aged between 50 and 60 depends on the
region. The data are as foll ows:

Regi on Popul ati on rate of arthritism
A 55000 around 20%
B 30000 around 5%

How nmany subjects should be taken in order to estinate the rate
of arthritismwth a 2% precision?

85000( 1. 96) 2 [ (55/85)(.2)(.8)+(30/85)(.05)(.95)]
n _____________________________________________________

= about 1140
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Stratified Sanpling; proportional allocation
VARI ABLE: Quantitative (nean)

POPULATION: Finite (size N, strata of size Ng)

AlM OF THE STUDY: Estinmation

NUMBER OF SAMPLES: strata

Confi dence i nterval:

N-n Y (ng/n) og?

where og2 is the variance per stratum
Sanmpl e si ze:
N z,2 = (ng/n) og2

24?2 = (ng/n) o2 + Nd2
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Stratified Sanpling; optimal allocation
VARI ABLE: Quantitative (nean)

POPULATION: Finite (size N, strata of size Ng)
AlM OF THE STUDY: Estinmation

NUMBER OF SAMPLES: strata

"OPTI MAL ALLOCATION' is the sharing out of subjects in strata
which will give the highest precision, for a given sanple size,
when the aimof the study is to nake a gl obal estimation for al
the strata, and not to test differences between strata. If the
vari ances of the strata are equal, the optinmal allocation
corresponds to PPS. Otherwi se, the nore general fornula is as
fol | ows:

Taki ng account of sanpling cost per elenentary unit differences
between strata: if Cg is the cost per stratum the gl obal cost
IS

C=2n5CS

and , for a given sanple size:

n NS 05/\/%
Ng = =-=---ceccnnn-
Z NS Gsl\/c:s
For a fixed total cost C
C Ng og/ VCg
nS = I SRR R
Z NS GS/\/CS

Exanpl e: suppose neasurenents of BM are taken in 2 strata, one
for people living in town, the other for people in the
countryside. 60 % of the population |live in the countrysi de and
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the cost per unit is 250 BF in town agai nst 500 BF outside.
Whi ch sanpl e size should be taken for a gl obal cost of 50000 BF?

50000( . 6/ V500)
Nscountryside= ------"--- - ---so-sossooosoooooo- = about 68
(.6/V500) + (.4/250)

50000( . 4/ V250)

(.6/V500) + (.4/250)

Total cost= 68*500 + 64*250 = 34000 + 16000 = 50000
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SPECI FI CATI ON OF SAMPLE SI ZE

METHOD: Cluster Sanpling; fixed or proportional allocation
VARI ABLE: Quantitative (nean)

POPULATION: infinite

AlM OF THE STUDY: Estinmation

NUMBER OF SAMVPLES: clusters

sample size for cluster sampling = sample size for SRS * design effect

variance with clustering
design effect =

variance without clustering

Epi-Info: how to obtain the design effect in a pilot study which can then after be used for
calculating sample size in further studies.

Example: “Expanded Program on Immunization” (EPI : Lemshow & Robinson (1985) see Epi-
Info manual, pp. 135...)

e dataareinepil.recfile (vaccina coverage, 30 clusters, 7 subjects per cluster, sample size
=210)

e run CSAMPLE with epirecl.rec, main variable VAC ...- analysis TABLES

e seeouput SE = 3.034 % = Vp(1-p)/n =+0.7381*0.2619/210
thisisthe within-cluster SE calculated with the Binomial formula. Logic: if ssmple random
sample (SRS) then Binomia distribution.

e run CSAMPLE with epirecl.rec, main variable VAC - psu CLUSTER- analysis TABLES

e seeouput SE =4.599 %

thisisthe observed between-cluster SE. Logic: if there was no cluster effect then between-cluster
SE should be the same as within-cluster SE.

e design effect = (4.599/3.034)2 = 2.298

e conclusion: sample size for cluster sampling of vaccinal coverage should be about 2.3 times
larger than sample size for SRS, for obtaining estimates the same confidence and precision.
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Chapter 9. Generalized Linear Model

Generalized Linear model

Risk Coefficients

Contrasts

Stratification

Bias (confounder) & Interaction (effect modification)
Multivariate model

Guidelines for the choice of a test

Strategies for model building

TARILES
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9.1 Confounding, Effect Modification and Stratification.

Taking several predictors allows to cope with BIAS (confounding) and
INTERACTION (effect modification).

BIAS means that effect of a predictor is due to its relationship with another predictor.
The effect will then disappear with stratification of the other predictor.
INTERACTION means that the effect is not constant for the different strata of the
other predictor.

variable X1 included in the model > Y dependent variable
apparent relationship

effective relationship effective relationship

other variable X2 not included in the model

The effect of a single predictor (X 1) on a dependent variable (Y) can be
partially or totally due to the relationship between X 1 and one or several other
possible predictors (X 2, X 3 ... Xk). When this is the case, other possible
predictors are then confounding variables or confounders. One of the

purposes of multivariate statistics is to take account of possible confounders.
Consider the following examples with three variables.

Examples of possible confounders.

() Does systolic pressure depend only on age or also on BMI which covaries
with age?

Does the effect of age remain when BMI is taken into account ? Taking account
of BMI might reduce or even falsify the apparent effect of age. BMI is a possible
confounder.

(1) 1s weight at birth related to ethnic group ?

We should take account of social class before drawing conclusions on weight
differences between ethnic samples. If the proportions of babies from different
social classes are not similar in the samples then we might attribute to ethnic
differences what is in fact caused by social class differences. This latter factor
would the be a confounder.

(111) Height at birth might also be a confounder for the ethnic - weight relationship.
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(IV) Is perinatal decease related to skull perimeter? Or does it in fact depend on

a related variable, weight at birth.

(V) Is decease rate lower with drug vs. placebo? Or are subjects which were
given the drug in better initial health than subjects in the “placebo group”.

(VI) Age might also be a confounder for the drug-decease rate relationship

In the simplest case (3 variables), stratification is describing the relationship between
two variables for the different levels of a third variable. We are then “controlling”
the possible confounding effect of the third variable.

Example (V) with proportions: effect of drug vs. placebo on recovery is described for
each initial health condition. (SPSS command: crosstabs)

Example (1) with means: effect of ethnic group on weight at birth is described for
each social class. (SPSS command: means)

If there is confounding (bias)then stratified description will reveal a weakening (or a
strengthening) of the effect for each strata. For example (V) effect of drug will be
weaker (or stronger) for each initial health condition taken separately. HINT:
compare before / after stratifying.

If there is effect modification (interaction) then stratified description will reveal a
difference in the strength of the effect between strata. For example (V) drug will
have a larger effect for subjects in relatively good initial health condition than for
those in bad initial condition. HINT: compare between strata.
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9.2 Generalized Linear Model with a single DF

A linear equation can be used for representing any relationship between two variables,
either categorical or quantitative. This is the Generalized Linear Model (GLM).
GLM is very simple when the predictor (X) only has one degree of freedom
(DF=1), that is for a single quantitative predictor or a binary categorical predictor.
The GLM is then simply a way for representing differences between means or
proportions with a linear equation, already used before for representing regression
lines.

Y = o+ B X

The o coefficient is the “constant”.

For linear regression, a is the mean of the y values when x values are centered on the
mean :y’ =meany + slope*(x —-mean x)

For logistic regression, just the same as linear regression if x is quantitative:

a is the mean of the logit y values when x values are centered on the mean.

If x is categorical, o is the mean of the logit y values if the categories are coded as
deviation contrasts.

For ANOVA, just the same as logistic regression with categorical x: a is the mean of
y values if the categories are coded as deviation contrasts.

The B coefficient is a slope, or just the same, a contrast.

The X values are either genuinely quantitative (e.g. weight in kg) or dummy (binary
categorical: e.g. sex coded as 0, 1).

Y’ represents predicted values. It stands for individual values in a regression model
(Linear or Logistic). Then there will usually be at least some difference between
expected (Y’) and observed () values even if the contrast is highly significant.
However when Y’ stands for a mean there will be no difference with the observed
value if the contrast is significant.

Consider the following examples for MEANS:

1) equation is trivial (predicted means are the same as observed means) if all the
contrasts are significant. Consider the following examples with only one contrast
(df=1).

Relationship between weight at birth and sex, with female coded 0 and male coded 1,
deviation first contrasts (and female coded 0, male coded 1):

Y’ = general mean + (mean category — general mean) * X

Predicted mean male = general mean + (mean male — general mean) * 1

Predicted mean female = general mean + (mean male — general mean) *(- 1)
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An example with simple first contrast:

Y’ = general mean + (mean category - mean weight female) * X
Predicted mean weight male =

grand mean + (mean weight male - mean weight female) * 0.5
Predicted mean weight female =

grand mean + (mean weight male - mean weight female) * (-0.5)

2) equation gives predicted values different from observed values if at least one

contrast is NS. Consider the following case with only one contrast (df=1),
supposing that weight difference between males and females is NS.

predicted mean weight female = grand mean

predicted mean weight male = grand mean

As we can see the effect of category difference on a mean or a proportion can be

represented by a slope provide that a numerical value is assigned to each category.
This is only possible for binary (dummy) categorical variables (see Chapter 2:
equal interval requirement). Again we see the_interest of dummy variables. We
already saw that variance calculation makes sense with dummy variables. We now
see that their effect on other variables can be quantified by slopes.

Interpretation of the slope (contrast) depends on the units used for describing the

variables. This is evident not only for a quantitative predictors (slope is multiplied
by 10 if skull perimeter is measured in cm rather than in mm) but also for
categorical ones.

The magnitude of the slope will for instance be divided by 2 if male-female contrast

is coded -1/+1 instead of 0/1. Notice that the coding will not depend on the original
units but on the contrast type. Thus with deviation contrasts, the coding is —1/+1
and the slope is for half the increment between categories (for 1 unit increase,

. . 2 - :
whereas the categories are 2 units apart). Then: OR =e ’8. For indicator or simple

contrasts: OR = e'B.

The sign of the slope (contrast) will change from + to - if male-female contrast is

coded 1/0 instead of 0/1. If two categorical variables are coded differently
magnitude or direction of their effects might be judged according to different
standards if we do not take care.
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variable types | Y a B X

guantitative - | values of intercept slope of linear values of quantitative

guantitative guantitative regression line predictor (in kg, years...
dependent variable
(in kg, years...)

guantitative - | logit of proportion | intercept slope of logistic values of quantitative

categorical in a category of the regression line predictor (in kg, years...
dependent variable

categorical - | values of global mean contrast between numerical values

guantitative

guantitative
dependent variable
(in kg, years...)

means

assigned to predictor’s
categories

categorical -
categorical

logit of proportion
in a category of the
dependent variable

global proportion

contrast between logits
of proportions

numerical

values

assigned to predictor’s
categories
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Risk Coefficients: which one and when?

OR

RR

Basic reason for using

does not depend on
prevalence

= invariant

easier to understand &
explain

very abstract

depends on prevalence

Drawback
= if prevalence in the sample
is arbitrary, sample RR does not
represent population RR
Logistic function Exponential function
Underlying

mathematical function

Linear transform

Logit

Log

Examples of
application

Case-control studies
Cohort studies

Cohort studies

Approximation

ORz=RR
If prevalence < 10%
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9.3 Generalized Linear Model with several DFs per predictor
and several predictors.

Y = a + B1* X1+ B2* Xo+ B3* X3 ..,

e when a predictor has several DFs there is one slope (contrast) per DF.
Examples: ANOVA for means in 3 samples (e.g. CBF- neglect), 2 slopes. Logistic
Regression for proportions in 4 samples (e.g; bloodgoup- throembolism), 3 slopes.

o effects of different predictors can be represented into the same model. Each
predictor is then represented by a number of slopes (contrasts) corresponding to its
DF.

In the examples above:

(1) effect of age and BMI on systolic pressure; one slope for each of the 2 quantitative
predictors (Multiple Linear Regression);

(1) effect of ethnic group (say 4 categories) and social class (say 5 categories) on
weight at birth; 3 slopes for ethnic group, 4 slopes for social class (ANOVA for
means);

(11) effect ethnic group (say 4 categories) and height on weight at birth; 3 slopes for
ethnic group, 1 slope for height (Analysis of Covariance);

(1V) effect of skull perimeter and weight at birth on decease rate; 1 slope for skull per.
1 for weight (Multiple Logistic Regression);

(V) effect of drug and initial health condition on decease rate; 1 slope for drug, 1 for
health condition (Multiple Logistic Regression);

(V1) effect of drug and age on decease rate; 1 slope for drug, 1 for age (Multiple
Logistic Regression).

e an INTERACTION is introduced as the product of two (or more) predictors (e.g.
X1* X2) in the Multivariate Model and represented with a specific slope (e.g. B3).

Y =a+ B1* Xgt+ B Xot+ Bs* Xi* X,

Just as for main effects, interactions are represented by as many slopes (contrasts) as
there are Dfs.

Example (11): effect of ethnic group (say 4 categories) and social class (say 5
categories) on weight at birth; 3 slopes for ethnic group, 4 slopes for social class plus
12 slopes for in the 4*3 DF interaction (ANOVA for means);
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e NUMBER OF SLOPES for a given predictor depends on the kind of
variables

e for a QUANTITATIVE PREDICTOR: only one slope
Y’ =my +b*(X-my) where bis the slope

example: b represents difference in mm Hg bloodpressure for 1 year of
age increase

e fOor a CATEGORICAL PREDICTOR AND A QUANTITATIVE DEPENDENT VARIABLE:
as many slopes as degrees of freedom (DF = number of categories-1)

Y’ =my +b1*Xy +bp*Xp+ b3*X3 . where by by bz are slopes

example: by =mg-my ;bp=mp-my ;bz=mz-my
each category has a specific COEFFICIENT for each X variable

e relationship between two CATEGORICAL VARIABLES: as many slopes
as degrees of freedom

logit (Y’) = m |ogit(y) + b1*X1 +b*Xy+ b3*X3  where by by bzare
slopes

and e by are Odds Ratios

example: by = logit(py) - m ogit(y) : b2 =logit(p2) - M |ogit(y)
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9.4 Generalized Linear Model with dependent variables with
more than 1 DF

Several quantitative dependent variables. The relationship can be tested with a
multivariate ANOVA model. (Multivariate ANOVA in SPSS).

Categorical dependent variable: more than 2 categories. The relationship can be tested

with a logistic model. But this is not available in SPSS.
Remember we can also use a Pearson Chi-square with DF = (L-1)*(C-1).

9.5 Multivariate statistical tests

The tests for GLM are subdivided into two broad categories.
When dependent variable is quantitative all methods are instances of ANOVA.

When dependent variable is categorical all methods are instances of
LOGISTIC REGRESSION.

DEPENDENT
VARIABLE
guantitative categorical
INDEPENDEN
VARIABLES
all quantitative ANOVA for linear regression logistic regression
example (1) example (1V)
all categorical ANOVA with several factors logistic regression
example (11) example (V)
quantitative and Analysis of Covariance logistic regression
categorical (ANCOVA)
example (VI)
example (1)
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e Probability distributions

DEPENDENT | QUANTITATIVE | CATEGORICAL COUNT
VARIABLE
Binomial Poisson
Student’s t (df) Normal z if all Ei >5 Normal z if all Ei >5
DF =1 ‘ —t
t2 (df) =F (1, df) 22 = Pearson Xz (1) 22 = Pearson Xz
(1)
DF=1 DF=1
df =n-2 DF=1
DF>1
Fisher F (DF, df) Pearson X2 (DF) if (80%) Ei >5 Pearson X2 if (80%) Ei >5
, 1 (DF)
(—75 t ) (_—,t 22)
_ (# 22)
%’;_‘ ki(l DF= (L-1)*(C-1)
= DF= (L-1)*(C-

1)
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INDEPENDENT-
DEPENDENT
VARIABLE TYPE

quantitative -
quantitative

categorical -
guantitative

quantitative -
categorical

categorical -
categorical

MODEL

linear regression

contrasts between means

logistic regression

contrasts between
proportions

NULL HYPOTHESIS
FOR DF=1

population R =0

population contrast = 0

population OR =1

population OR =1

SAMPLING Pearson y?
DISTRIBUTION Student’s t Student’s t Log Likelihood y2 or
FOR DF=1 Log Likelihood %2
R mqy- mo > (OI-EI)Z/EI
TESTSFOR DF=1 -2 In (LO/LD) or
V(1-R?)/(n-2) SE In (L1/L0)
NULL HYPOTHESIS population all population contrasts = all populationOR =1 all populationOR =1
FORDF > 1 multiple R =0 0
SAMPLING Pearson 2
DISTRIBUTION Fisher F Fisher F Log Likelihood 2 or
FOR DF>1 Log Likelihood 2
R? 2y ¥ (Oi-Ei)YEi
TESTSFOR DF> 1 -2 In (LO/LD) or
(1-R?)/(n-k) s2 In (L1/L0)
APPLICATION Linear relationship Unimodal distributions Logistic relationship (80% of) Ei >5
CONDITIONS Unimodal distributions Equal dispersion or

Equal dispersion

Logistic relationship

NON- PARAMETRIC
TESTS

Kendall rank coefficient
(= 7 coefficient)

Kruskal-Wallis
test

Kendall rank coefficient
(= 7 coefficient)

Fisher exact probability test
(only for DF=1)
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9.6 Strategies for model building

Different strategies can be taken for building a model. The following strategy is fairly
simple and should also be fairly reliable.

1) univariate selection: X variables which are significant not too far away from
significance for predicting Y in univariate tests will be kept in the multivariate
starting model

2) selection of non-redundant variables: only one among different redundant
predictors will be kept in the multivariate starting model (e.g. if there are several
variables related to mother’s childbirth history , such as gestity, parity, nber. living
children, only the most significant will be kept).

3) starting model without interaction terms: only main effects, without interactions,
are entered in the starting model.

4) forward selection of variables in the starting model.

5) intermediate model with 2-way interactions: This model will contain all the
predictors selected in the previous stage plus two-way interactions.

6) forward selection of variables and interactions in the intermediate model.

Procedure stops here if individual variables entering into a selected interaction are
also selected (e.g. X1*X3 interaction selected and X1, X3 variables also selected).
The model obtained is the final model.

7) otherwise if there are significant interactions without significant component
variables the latter are also entered (e.g. as the X1*X3 interaction is significant the
X1, X3 variables are entered ). This is application of the “Hierarchy principle” which
says that interaction should not be taken into account if main effect is not in the
model.
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Strategy for model building with logistic regression|

Test the effect of the variables without interaction term.
Method: stepwise (“forward conditional” in SPSS; option: “at last step”).
Contrast: indicator (first).

Decision:
— > > put all the significant variables (that is those selected) into the model: still
ADDITIVE model at this stage.
» If only one variable is significant, stop here: ADDITIVE model with a single
variable.
» If more than one variable is significant go to stage 2.

STAGE 2

Test the effect of the significant variables and of their interaction(s).
Method: stepwise (“forward conditional” in SPSS; option: “at last step”).
Contrast: indicator (first).

Decision:
» put all significant interactions (that is those selected) into the model.

» Also put all the variables entering into these interactions into the model
(even the non significant variables provided that they have a significant
interaction with another variable).

» If significant interaction(s): opt for the INTERACTIVE model.

» Calculate the OR per stratum with the stratified chi-squares
(Crosstabs in SPSS).

» Obtain the significance levels for the variables with another contrast
type, different from indicator (e.g. simple), because these
significance levels are not calculated independently of the
significance level of the interaction with indicator contrast. (Why not
choosing another contrast at the very start then: because the
relationship with individual strata OR is easier to see manually with
indicator; calculations are more complex with other contrast types?).

» If no significant interaction(s): opt for the ADDITIVE model.

» Take a global OR for each variable (given by output of STAGE 1).

! Note that this is essentially for pedagogical purposes. In practice, a procedure based
on simple contrasts would be quicker as it directly provides the significance levels for
the variables with (or without) interaction.
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» Significance levels are those obtained in stage 1 (they do not
depend on contrast type when there are no interactions into the
model).
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Normal distribution. Probability aera above the Z value.
Z first decimal on line header; second decimal on column header. (NDIST formula in Excel)

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 0.500 0.496 0.492 0.488 0.484 0.480 0.476 0.472 0.468 0.464
0.1 0.460 0.456 0.452 0.448 0.444 0.440 0.436 0.433 0.429 0.425
0.2 0.421 0.417 0.413 0.409 0.405 0.401 0.397 0.394 0.390 0.386
0.3 0.382 0.378 0.374 0.371 0.367 0.363 0.359 0.356 0.352 0.348
0.4 0.345 0.341 0.337 0.334 0.330 0.326 0.323 0.319 0.316 0.312
0.5 0.309 0.305 0.302 0.298 0.295 0.291 0.288 0.284 0.281 0.278
0.6 0.274 0.271 0.268 0.264 0.261 0.258 0.255 0.251 0.248 0.245
0.7 0.242 0.239 0.236 0.233 0.230 0.227 0.224 0.221 0.218 0.215
0.8 0.212 0.209 0.206 0.203 0.200 0.198 0.195 0.192 0.189 0.187
0.9 0.184 0.181 0.179 0.176 0.174 0.171 0.169 0.166 0.164 0.161
1 0.159 0.156 0.154 0.152 0.149 0.147 0.145 0.142 0.140 0.138
1.1 0.136 0.133 0.131 0.129 0.127 0.125 0.123 0.121 0.119 0.117
1.2 0.115 0.113 0.111 0.109 0.107 0.106 0.104 0.102 0.100 0.099
1.3 0.097 0.095 0.093 0.092 0.090 0.089 0.087 0.085 0.084 0.082
1.4 0.081 0.079 0.078 0.076 0.075 0.074 0.072 0.071 0.069 0.068
15 0.067 0.066 0.064 0.063 0.062 0.061 0.059 0.058 0.057 0.056
1.6 0.055 0.054 0.053 0.052 0.051 0.049 0.048 0.047 0.046 0.046
1.7 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037
1.8 0.036 0.035 0.034 0.034 0.033 0.032 0.031 0.031 0.030 0.029
1.9 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.024 0.024 0.023
2 0.023 0.022 0.022 0.021 0.021 0.020 0.020 0.019 0.019 0.018
2.1 0.018 0.017 0.017 0.017 0.016 0.016 0.015 0.015 0.015 0.014
2.2 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011
2.3 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008
2.4 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006
2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005
2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001
3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Normal distribution. Double-tailed probability aera (2*NORMDIST formula in Excel)

z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0 1.000 0.992 0.984 0.976 0.968 0.960 0.952 0.944 0.936 0.928
0.1 0.920 0.912 0.904 0.897 0.889 0.881 0.873 0.865 0.857 0.849
0.2 0.841 0.834 0.826 0.818 0.810 0.803 0.795 0.787 0.779 0.772
0.3 0.764 0.757 0.749 0.741 0.734 0.726 0.719 0.711 0.704 0.697
0.4 0.689 0.682 0.674 0.667 0.660 0.653 0.646 0.638 0.631 0.624
0.5 0.617 0.610 0.603 0.596 0.589 0.582 0.575 0.569 0.562 0.555
0.6 0.549 0.542 0.535 0.529 0.522 0.516 0.509 0.503 0.497 0.490
0.7 0.484 0.478 0.472 0.465 0.459 0.453 0.447 0.441 0.435 0.430
0.8 0.424 0.418 0.412 0.407 0.401 0.395 0.390 0.384 0.379 0.373
0.9 0.368 0.363 0.358 0.352 0.347 0.342 0.337 0.332 0.327 0.322
1 0.317 0.312 0.308 0.303 0.298 0.294 0.289 0.285 0.280 0.276
1.1 0.271 0.267 0.263 0.258 0.254 0.250 0.246 0.242 0.238 0.234
1.2 0.230 0.226 0.222 0.219 0.215 0.211 0.208 0.204 0.201 0.197
1.3 0.194 0.190 0.187 0.184 0.180 0.177 0.174 0.171 0.168 0.165
1.4 0.162 0.159 0.156 0.153 0.150 0.147 0.144 0.142 0.139 0.136
1.5 0.134 0.131 0.129 0.126 0.124 0.121 0.119 0.116 0.114 0.112
1.6 0.110 0.107 0.105 0.103 0.101 0.099 0.097 0.095 0.093 0.091
1.7 0.089 0.087 0.085 0.084 0.082 0.080 0.078 0.077 0.075 0.073
1.8 0.072 0.070 0.069 0.067 0.066 0.064 0.063 0.061 0.060 0.059
1.9 0.057 0.056 0.055 0.054 0.052 0.051 0.050 0.049 0.048 0.047
2 0.046 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037
2.1 0.036 0.035 0.034 0.033 0.032 0.032 0.031 0.030 0.029 0.029
2.2 0.028 0.027 0.026 0.026 0.025 0.024 0.024 0.023 0.023 0.022
2.3 0.021 0.021 0.020 0.020 0.019 0.019 0.018 0.018 0.017 0.017
2.4 0.016 0.016 0.016 0.015 0.015 0.014 0.014 0.014 0.013 0.013
25 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010
2.6 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.007 0.007
2.7 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005
2.8 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004
2.9 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003
3 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002
3.1 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001
3.2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
3.3 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
3.4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000
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Student’s t distribution. Double-tailed probability aera: to be above the t value or below the —t value
t first decimal on line header; DF on column header. (TINV formula in Excel)

t values |df 5 10 15 20 25 30 40 50 60 100 5000
0.2 1.48 1.37 1.34 1.33 1.32 131 1.30 1.30 1.30 1.29 1.28

0.1 2.02 1.81 1.75 1.72 1.71 1.70 1.68 1.68 1.67 1.66 1.65

0.05 2.57 2.23 2.13 2.09 2.06 2.04 2.02 2.01 2.00 1.98 1.96

0.01 4.03 3.17 2.95 2.85 2.79 2.75 2.70 2.68 2.66 2.63 2.58

0.001 6.87 4.59 4.07 3.85 3.73 3.65 3.55 3.50 3.46 3.39 3.29
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Chi-square distribution. Probability aera: to be above the X value.

X first decimal on line header; DF on column header. (CHIINV formula in Excel)

X2 values
p df 1 10 20 40 60 80 120
0.2 1.64| 13.44| 25.04| 47.27| 68.97| 90.41| 132.81
0.1 2.71 15.99| 28.41| 51.81| 74.40{ 96.58| 140.23
0.05 3.84| 18.31| 31.41| 55.76] 79.08] 101.88| 146.57
0.01 6.63| 23.21| 37.57| 63.69| 88.38| 112.33| 158.95
0.001 10.83| 29.59| 45.31| 73.40| 99.61| 124.84| 173.62
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F distribution. Probability to be above the F value.
P on line header; DF on column header. (FINV formula in Excel)

F values |(dfl 1 1 1 1 1 1 1 1
p df2 1 10 20 40 60 80 120 5000
0.2 9.47 1.88 1.76 1.70 1.68 1.67 1.66 1.64
0.1 39.86 3.29 2.97 2.84 2.79 2.77 2.75 2.71
0.05 161.45 4.96 4.35 4.08 4.00 3.96 3.92 3.84
0.01 4052.18 10.04 8.10 7.31 7.08 6.96 6.85 6.64
0.001 405311.58] 21.04| 14.82 12.61 11.97| 11.67 11.38 10.84
F values |dfl 10 10 10 10 10|df1 20 20 20 20
p df2 20 40 60 80 120|df2 40 60 80 120
0.2 1.53 1.44 1.41 1.39 1.37 0.2 1.36 1.32 1.31 1.29
0.1 1.94 1.76 1.71 1.68 1.65 0.1 1.61 1.54 1.51 1.48
0.05 2.35 2.08 1.99 1.95 1.91 0.05 1.84 1.75 1.70 1.66
0.01 3.37 2.80 2.63 2.55 2.47 0.01 2.37 2.20 2.12 2.03
0.001 5.08 3.87 3.54 3.39 3.24| 0.001 3.15 2.83 2.68 2.53
F values |dfl 40 40 40(df1 60 60|df1 80
p df2 60 80 120|df2 80 120|df2 120
0.2 1.27 1.25 1.23 0.2 1.22 1.20 0.2 1.18
0.1 1.44 1.40 1.37 0.1 1.36 1.32 0.1 1.29
0.05 1.59 1.54 1.50 0.05 1.48 1.43 0.05 1.39
0.01 1.94 1.85 1.76 0.01 1.75 1.66 0.01 1.60
0.001 2.41 2.26 211 0.001 2.10 1.95 0.001 1.86
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Chapter 10
Multifactorial ANOVA

The incorporation of several factorsin
the ANOVA alowsto solve the
following problems:

The confounder problem: as
we have already seen the presence of a
statistical relationship between any two
variables must be interpreted with care.
When the ANOVA only includes a
single factor, the effect of the factor
can due to the confounding effect of a
“hidden” factor, which is not included
in the statistical analysis. Confounding
can only occur if the two factors are
related, i.e. if relative frequencies of
factor A categories depend on factor
B categories (non-orthogonal design).
Confounding is not possible when
relative frequencies of factor A are
constant across factor B categories
(orthogonal design).

The interaction problem: there
isan interaction when effect of a
given factor on the dependent
variable (not its frequency) isrelated
to the other factor. Interaction means
that the effect of factor A dependson
the value of factor B. Interaction is
reflected in non- parallelism: contrast
values (slopes) of factor A changeasa
function of factor B.

Orthogonal design: confounding is not
possible

Al | A2 |totd

Bl P1 P2 1

B2 P1 P2 1

Non-orthogonal design: confounding is
possible

Al | A2 |totd

Bl | pu | P 1

B2 | pa | P2 1

P11 # P21 @ P12 # P22

Example of confounder: effect of A in
single factor ANOVA islarger than in
two-factor ANOV A because larger
proportion of B1 category in A2 vs ALl

Y B1
/
____—|B2
Al A2 Al

A2

Example of interaction: effect of B is
smaller for A2 category.
Bl

A

Al A2 Al A2

Y
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e testsfor two-factor ANOVA

Effect of each factor is tested
separately by F-test, with DF
calculated in the same way as in one-
factor ANOVA.

Effect of interaction is also tested
separately with DF equal to the product
of factor’'s DFs.

Tests for contrasts with Student’ s t-
tests. For each factor and interaction
there are as many contrasts as DF.

Denominator of F-testsis the within-
cellsMS

several HO:

for testing factor A: all contrasts
for factor A =0

for testing factor B: all contrasts
for factor B =0

for testing the interaction: all
contrastsfor interaction AB =0

Sour ce of variation df SS MS
F

factor A ki-1

factor B ko-1

interaction AB  ( ky-1)*(k»-1)
residue n- kl'kz' (kl-l)*(k2-1)+1...

total n-1

Test ‘Feore =MS_ /MS egdue
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e Anova Design

Number of factors: generalization of the preceding method with more than two
factors. The only new element is the occurrence of the several levels of interaction.
Besides the interactions between two factors (interactions of the first order), there are
interactions of upper order (second, third...) between 3, 4 ... factors. A second order
interaction that the amount of interaction between two factors depends on a third one.

Within vsresidual error term: Within error term means that denominator of the F-
ratio isthe within cell MS. Residual error term means that only residual error is taken
as denominator which is useful for repeated measurements (as explained after).
Within+residual error term means that non-significant factors are dropped out which
makes that error term isincreased by non-significant variance (“residual” variance).
Thisisthe usual option.

Unique Vs sequential testing design: Unique design means testing all factors and
interactions simultaneously. Each factor (and interaction) is then corrected for
confounding effects of all other factors. Thisisthe usual option. Sequential design
means that factors (and interactions) are included one after another and are corrected
for those entered before into the model and confounded with those entered after into
the model.

A NOTE ON TERMINOLOGY::

- Univariate: asingle predictor (X = Y)

- Multivariate: several predictors (X1, X2, ... =2 Y)

- Multivariate in SPSS slang: several dependent variables

(X> YLY2..)

(X1, X2, ... > YL, Y2 ..)
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- e an example of two-factor ANOVA

Example: relationship between district (4 categories) , salt consumption (in 2
categories) and systolic pressure (in mm Hg).

Descriptive and bivariate statistics (SPSS output 10.1)

There is asignificant relationship between SP and district (F(3,36)= 4.25, p=.01) but
also between SP and salt consumption (F(1,38)= 204.19, p<.0001), and seemingly
between district and salt consumption (x3(3)= 12.14, p=.007, but thistest is only
indicative as there are more than 50% cells with frequencies below 5).

ANOVA with two factor s (SPSS output 10.2)

District effect is NS when salt isincluded into the model (F(3,32)= 0.03, p=.99).
Interaction isalso NS (F(3,32)= 1.27, p=.3) athough contrast lines are not strictly
paralel. Only salt effect remains significant (F(1,32)= 130.46, p<.001).

Conclusion

Salt is aconfounder for SP-district relationship.
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e Analysis of Covariance
(ANCOVA)

ANCOVA dlows usto test effects of
both categorical and quantitative
variables on a quantitative variable.
ANCOVA designs are mixtures of
ANOVA and regression designs.

Incorporation of quantitative
predictors ( “covariates’) allow to take
account of their possible confounding
effects.

e Application conditions:
Homogeneity of within-group
variances (asin ANOVA) but also
homogeneity of covariances. This
means that both variances of the
dependent variable and its covariance
with the quantitative predictor should
be constant over the different levels of
the categorical predictor.

e testsfor ANCOVA

Homogeneity of variance is tested by
Bartlett-Box. Homogeneity of
covariance istested by introducing a
factor-covariate interaction into the
model.

Effect of each factor and each covariate
istested separately by F-test, with DF
calculated in the same way asin
ANOVA and in regression.

Effect of interaction is also tested
separately with DF equal to the product
of factor’s DFs.

several HO:

for testing factor A: all contrasts
for factor A =0

for testing covariate X: p =0

for testing the interaction: p is
constant over A levels.

Source of variation df SS MS
F

factor A k-1

covariate X 1

interaction AX (ks-1)

residue n- 2* (ky-1) -2

total n-1

TestiFroe =MS /MSresidue
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e example of Analysis of Covariance

Effect of mother education on gestity, controlling for age (covariate). See SPSS output
10.3. First ANOVA s runned with the age* education interaction in the design. As
interaction is NS (p=.226), analyze of covariance is applicable. A second ANOVA,
without interaction with covariate, shows that effect of education isjust NS (p=.057).
Effect of ageis S (p<.0005).
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* Repeated measures ANOVA

To be used when the same_quantitative
variable is measured on several
occasions on the same subjects.

Simplest situation: when the same
variable is measured twice on the same
subjects. A “paired t-test” can then be
used. It is based on the mean and
standard-deviation of the differences.

Alternative test gives exactly the same
result: arepeated measures ANOVA (
F (DF=1,n-1) = t3 DF=n-1).

With more than 2 measurements, two
different ANOVA tests are available:
univariate or multivariate.

Univariate ANOVA: two different
factors are considered. Subjects are
taken asa“random” factor which
means that each subject is adifferent
level of afactor withn-1 DF. Thisisa
random factor because the same factor
(“subjects’) will usually contain
different levels (individuals) in two
different studies. The second factor isa
“fixed” factor, equivalent to all the
factors we have considered up to now.
This factor correspond to the different
repetitions of the measure. each
repetition is made in a different
condition (day, bodily location...) and
these conditions are the factor’ s levels.
The denominator of the F ratio used
for testing the effect of the fixed factor
isthe variance of the fixed factor effect
across subjects (M S fixed-random
interaction). This makes sense: the test
will be less significant when fixed
factor effect varies more across
subjects.

Condition for using univariate
ANOVA design: Mauchly Sphericity
Test must be NS (HO: equality of

e example of repeated measures ANOVA

variances and covariances of individual
pairwise differences between levels).

example of paired t-test: Istherea
difference between skull perimeter of
twins ? See SPSS output 10.4

Paired t-test

Mg
t (DF=ng-1) =——
sdNng
where n is the number of pairs

Mg is the mean of the differences
sgisthe SD of the differences

Univariate ANOVA (“mixed design”)

M fixed
F (DF=k-1, (k-1)*(n-1) =

MS interaction fixed* random

where k is the number of repetitions
n isthe number of subjects

Mauchly Sphericity Test : hasto be
NS for using Univariate ANOVA.
Sphericity means that variability of the
fixed factor effect is constant for the
different possible pairwise differences
between factor’s levels.

Example: variability of CBF
differences between cerebral areas A &
B should be the same as between A &
C,B&C...

See SPSS outputs 10.5 & 10.6
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Cerebral blood flow (CBF) was measured in 5 different cervical regions on the same
subjects (only subjects with cognitive neglect will be analysed here). Question: does
CBF depend on theregion ?

DATA'

Cerebral Region Superior Inferior Posterior Frontal | Frontal 1 Mean 5
Parietal Parietal Temporal regions

Diagnostic CBF1 CBF 2 CBF 3 CBF4 CBF 5

neglect (n=15) | 90.43 88.48 87.38 95.38 93.85 91.11

code=1

nOdneg|80t (n=13) | 97.29 97.68 99.20 98.66 99.38 98.44

code=

mean both groups | 93.62 92.75 92.87 96.90 96.42 94,51

Table 10.1

Test of the effect of brain location on CBF for subjects with neglect (SPSS output
10.5). As Mauchly Sphericity test isNS (p=.13), we can use the univariate test for
repeated measurements. Effect of brain location is highly significant with this
procedure(F(df=4,56) = 8.31; p<.0005). Notice that the multivariate test although less
powerful is aso significant but with ahigher type | error (p=.025). Simple contrasts
are not available for repeated measurements. Difference contrasts were used instead.
They show that differences between Parietal regions are not significant ((p=.16), that
difference between Temporal and the two Parietal regionsisaso NS (p=.19). But
difference between non-Frontal regions and Frontal | region is highly significant
(p<.0005). (Lessinteresting: Difference between Frontal 11 region and all 4 othersis
just significant (p=.033)).

We conclude from these tests and from the mean values presented in Table 10.1 that
CBF of sujects with neglect is significantly lower for non-Frontal brain regions.

e example of repeated measures ANOVA in which the within-subjects factor is

(“random” factor) crossed with a between-subjectsfactor (“fixed” factor).

Does CBF depend on brain location and on presence vs absence of neglect ? Does the
effect of brain location depend on neglect ? To answer these questions, both for
subjects with neglect and those without neglect are now included in the repeated
measures ANOV A (SPSS output 10.6).

! Demeurisse, G., Hublet, Cl., Paternot, J., Colson, C. and Serniclaes, W. (1997) “ Pathogenesis of
subcortical visuo-spatial neglect. A HMPAO SPECT study” Neuropsychologia. 35, 731-735.
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Effect of the between-subjects factor, neglect, is highly significant (F(df=
1,26)=31.68, p<.0005). Effect of neglect is negative (-7.4) because CBF is lower for
neglect (coded 1) than for no-neglect (coded 0). As Mauchly Sphericity test iSNS
(p=.199), we can use the univariate test for ng the effects of the within-subject
factor, brain location. Effect of brain location is significant (F(df=4,104) = 4.26;
p=.003) and so does the location-neglect interaction (F(df=4,104) = 3.23; p=.015) .
Difference contrasts were used for location and simple (first) contrasts for neglect. For
location, results are similar to those obtained in the previous analysis. Only two
difference contrasts are significant: (1) between non-Fronta regions, on the one hand,
and Frontal | region, on the other hand (p=.011); (2) between the Frontal 11 region and
all 4 others (p=.023). Neglect-location interaction contrasts are also available in SPSS
Output 10.5. A significant interaction contrast means that effect of neglect (smple
contrast) is different in a given location versus the mean of the previous ones
(difference contrast) and that the effect is larger in thislocation if the contrast
coefficient is positive, lesser if the coefficient is negative. Only interaction contrast T4
issignificant here (p=.031) and it has a positive vaue (5.224) which means that effect
of neglect islesser in Frontal | region vs. mean of the 3 non-frontal regions. This
interpretation can be checked by looking at the datain Table 10.1. Mean of neglect
effect in Frontal | isabout -3 units CBF against -8 units in the three non-frontal
regions, a difference of about +5 .

We conclude from these tests and from the mean values presented in the Table above
that CBF is significantly lower for subjects with neglect and for non-frontal brain
regions. Further, CBF lowering for subjects with neglect is more important in non-

frontal regions as revealed by the significant |ocation-neglect interaction.
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Chapter 11

Multiple linear regression

We use multiple linear regression
when the value of a quantitative
variable is predicted from the values of
several other quantitative variables or
“predictors’, using alinear equation.

A partial regression coefficient (b) is
attached to each predictor.

Relative importance of the predictorsis

given by the standardized partial
regression coefficients (beta), or by
partial correlation coefficients
(Tyx1.x0)

rzyxl-xz is the proportion of variance

explained by predictor xq

If predictor and dependent variable are
not correlated with the other predictor

2yxy.xp= Pyx

Overdl strength of the predictionis

given by amultiple correlation
coefficient (R).

R? is the proportion of variance
explained by all predictors.

An unbiased estimation of population
p’isgiven by “adjusted RZ" .

y' = a+bixq +boxo+ ... +bpxk

by by .. by arepartial regression
coefficients

standardized (partial) regression

coefficients:
betaj = bj *sxj/sy

squared partial correlation
coefficients (with two predictors) :

2
(Tyxq = Tyxo* Tx1 x2)

r2yxl.x2 =

(L rdyx,)(1-2;x,)

squared multiple correlation
coefficient (with two predictors)

r2yxl + r2yx2 - 2ryx1* Tyx2* Tx1x2

1 'r2x1x2

adjusted R2=1-(residual MY total M S)
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e testsfor multiplelinear regression
Test of HO : multiple correlation
coefficient is null, by F-test with
number of degrees of freedom of the
regression equal to the number of
predictors.

Test of HO: apartia correlation
coefficient is null, by Student's t-test or
just the same with a F test..

HO:B1=Bo=..= Bk =0
or just thesame: p=0

Sour ce of variation df SS MS

regression k
residue n-k-1
total n-1

Test :FKNK-1 = M S g esson/™ Sresidue

HO:B1=0
or just thesame: p1 =0

M2yx1.x2..xk
Fl,n-k-l -

(1-r2yx1 x2..xk)/(N-k-1)

FLn-k-1- (tn—k—l )2
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e an example of multiplelinear regression

Example: prediction of systolic pressure from weight and cholesterol level in a
sample of 300 (or slightly less depending on the missing values) male subjects.
Univariate correlations (SPSS output 11.1):

R (SP, Weight) = 0.150 (S, p=.01)

R (SP, chol) = 0.147 (S, p=.01)

R (chol, Weight) =0.174 (S, p =.003)

Descriptive statistics (SPSS output 11.2):

SD (SP) = 16.20

SD ( WEIGHT) = 10.39

SD (CHOL ) = 39.77

Multivariate equation: (SPSS output 11.3):
predicted pressure= 116 + 0.18*weight + 0.05*chol

Standardized regression coefficients::

betaprew_jrech(j: 0.05* 3977/ 16.20 = 0.12

Both predictors have about the same strength.

Multiple correlation coefficient:

(.150)2+(.147)2-2(.150)(.147)(.174)

= = .035
1-(.174)2
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Percentage of explained varianceis about 3 %.

Tests:

Prediction of systolic pressure from weight and number of cigs. is significant
(F(2,292) =3.98; Sat p=.02).

Effect of weight aloneis significant (S at p=.02).

Effect of number of cigs. is non significant (NS, p= 0.31).

Conclusions: systolic pressureis related to weight; effect of number of cigarettes a
day is NS when weight isincluded in the regression analysis which shows that thisis

not a confounder.

Asweight aloneis significant p estimation should be given by separate correlation
between systolic pressure and weight :

Pes = 0.15 + 1.96* \(1-.15)% (297-2) = (0.04; 0.26)
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e predictor selection for multiplelinear regression

Forward inclusion in the regression equation: predictors are included by order of
decreasing partial correlation with the dependent variable. The predictor isincluded if
the partial correlation is significant and if the multiple correlation with the other
predictors already in the equation is not too large (if the R2 between candidate
predictor and other predictorsis not too large or just the sameif 1-R?, whichiscalled

"tolerance’, is not too small).

Backward inclusion: all the predictors are included at first and are thereafter
selectively excluded. A predictor is excluded if the partial correlation is not significant

Stepwise inclusion: starts asin forward but each time anew variable is entered into
the equation the variables aready in the equation are checked as in backward.

See SPSS output 11.4 as example.
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Chapter 12
M ultilogistic regr ession

Multilogistic regression allows to test
the effects of severa predictors,
categorical or quantitative, on a
categorical dependent variable.
Purpose: to cope with possible
confounding effects and interactionsin
OR estimation.

e Application condition

Relationship between predictors and
dependent variable should fit alogistic
regression curve reasonably well, i.e.
the differences between observed and
predicted values should be non
significant.

Fit is always perfect when all
predictors are categorical and with al
terms (factors and interactions) into the
model (“saturated” model).

e tests of factorsand interactions

Effect of each factor is tested
separately by -2LL  Improvement Chi-
square (or with Wald test), with DF
calculated in the same way as in one-
factor logistic regression.

Effect of interaction is also tested
separately with DF equal to the product
of factor's DFs.

e predictor selection for
multilogistic regression

Forwards stepwise and backward
stepwise selection of both factors and
interactions are possible. Different
criteria can be used for each option. LR
option is the most rigorous criteria but
takes the longest calculation time.

A model with 3 terms: 2 factors (1 DF
each) and their interaction.

Logit (p) = o + B1 X1 + B2 X2 + B3 X1*X2

With 2 DF for factor 1:
Logit (p) = o + B1 X11 + P2 X12 + B3 X2

+ B4 X1+ X2 + Ps X12* X2

Test that the data fit the logistic model:
Hosmer-Lemeshow (2

Practically: exclude large outliers.

Wald test is aways available.
-2LL y? improvement test is only
available with stepwise selection.

Improvement 2=
{-2LL 2 (model )} - {-2LL %2
(model at previous step)}

Model y%= {-2LL 2 (model)} - {-
2LL 2 (model with constant only)}



176 W. SERNICLAES - Public Health School ULB

e Mantel-Haenszel procedure

“Mantel-Haenszel” procedure

gives results similar to those of the
logistic model without interactions (see
EPI-INFO Output 12.1).

Using the “M-H” method requires that
interaction is NS which can be tested
by the “Wulf” test.
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e Example of multilogistic regression with 2 categorical predictors
(SPSS output 12.1)

Effect of smoking and ethnic group on loweight at birth in asample of 189 births.
Smoking isin two categories (non-smoker, smoker) and ethnic group in 3 categories
(white, black, other).

Data description: OR-smoker is largest for whites (5.76), lower for blacks (3.30) and
lowest for others (1.25).

Globa OR-smoker without stratification is 2.02 (SPSS output 12.2) . But this value
does not take account of size differences between ethnic group samples (96 whites, 26
blacks, 67 others) which affect the global OR calculation because loweight prevalence
issmaller for whites although they display the highest smoking rate. We therefore
expect alarger OR-smoker estimation when controlling for ethnic group.

When ethnic group isincorporated into the model (SPSS output 12.3), OR -smoker is
estimated as 3.05. As expected thisis above the 2.02 val ue obtained without
controlling for ethnic group. Notice that ethnic group effect is S (p=.01) and should
therefore be taken into account for OR-smoker estimation. Also note that OR-ethnic
group (other vs. black) is 1.025 and OR (white vs. black) is0.338. Risk of loweight is
thus almost the same for black and other groups and smaller for the white group with
this model where effect of ethnicity is assessed without taking account of the
intercation between smoking and ethnicity. These OR cannot exactly conform to the
data because there is always some interaction between variables, whatever they are. In
the present data, prevalence of loweight at birth amounts to 42%, 37%, and 24%,
respectively for blacks, others and whites. The OR (white vs. black) of 0.338
overestimates the 18% decrease for white vs. black (the empirical OR is0.43),
whereas the OR-ethnic group (other vs. black) of 1.025 dlightly distorts the 5%
decrease for others vs. blacks (underestimates the empirical OR is0.81).

Asshown in Figure 12.1, effect of smoking is not constant across ethnic categories.

Should the smoker-ethnic group interaction also be taken into the model ? No because
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itis non significant (P=.22; see SPSS output 12.4). Therefore, confidence limits are

based on the model without interaction.

95% CI for In (OR) smoke are: 1.1159 + 1.96*0.3692 = (0.39 ; 1.84)
95% CI for OR smoke are: (1.48 ; 6.29)

Had the interaction been significant, we should have a different OR estimation for
each ethnic category (see above OR-smoker = 5.76 for whites, 3.3 for blacks and 1.25
for others). These OR can also be retrieved from the Logistic regression output. Start
from the fact that “non-smoke” and “black” are taken as reference categories here
(because we used indicator first contrasts) and that other ethnic groups are in the
following order: other (2nd) and white (third). Therefore the OR-smoke (3.30)
coresponds to the risk for the blacks. OR-smoke for othersis obtained by EXP(1.194-
0.971) = 1.25, where 1.194 is the slope the smoke and —0.971 is the slope for the first
contrast for interaction . Similarly, OR-smoke for whitesis obtained by Exp(1.194
+.557) = 5.76.
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Figure 12.1 - Non-parallelism of logit lines revea s the presence of ethnic group-
tabagism interaction. The interaction is however non-significant in this example (P
=.22; seetext).
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* Repeated measuresfor a
categorical dependent variable

e McNemar Chi-square

When a categorical variableis
measured twice on the same subjects
(“two related samples’) data can be
represented as follows. We construct a
contingency table with 2 times 2
entries, in which the rows correspond
to the number of events (1) or non-
events (0) in sample 1, and the
columns to the number of events and
non-events in sample 2. Examples of
events are: diseased, vaccinated, ...
Examples of factors which make the
distinction between samples are: drug
vs. placebo, district management
policy, ... Inwhat follows we will take
the diseased and drug example.

The contents of the 4 cells within the
table correspond to the number of
individuals who are:

« diseased with placebo and not with
drug (s frequency)

«diseased with drug and not with
placebo (r frequency)

« diseased with both treatments (not
relevant)

« non-diseased with both treatments
(not relevant).

Only part of the datain the table are
useful for the test. Frequencies of
diseased or non-diseased with both
treatments are not used because they do
not provide any information on the
difference between treatment effects.
Relevant information is only provided
by frequencies of subjects which
exhibit a change in one or another
direction, i.e. by r and s frequencies.
Difference between directions of
change istested by "M CNEMAR
test".

placebo

drug
1 0
relevant S

not

relevant

MCNEMAR 72 (DF=1)

test of HO:

population r = population s.

Provided that (r+s)/2 islarger than or
equal to 5, the following ratio:

(r-s)>?

r+s

follows an approximate )2 (DF=1)

distribution.
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e Non-parametric alternativeto
McNemar: Binomial test

Used when (r+s)/2 is lesser than 5.
e Cochran’sQ test

Thistest is ageneralized McNemar
test. Cochran’s Q test is used when the
same categorical variable is measured
twice or more on the same subjects
(“two or several related samples’).

e Logistic modelswith within-
subjectsfactors

A logistic model with treatment (drug
vs. placebo) as within-subject factor
would give similar results to those
obtained with McNemar test.

Logistic models can aso be applied to
several repetitions (e.g. drugl, drug2,
placebo), and isthen similar to
Cochran’s Q test.

Logistic models can aso be used for
designs which cannot be treated with
Cochran’s Q test:

for repeated measures with quantitative
predictors

for amixture of within-subjects and
between subjects predictors

Logistic models with within-subject
factors are not available in SPSS.

example of within-subject factor with
quantitative predictors:

effect of varying the amount of
quinine absorption for each subject in
asample of malaria patients
(quantitative within subject) on malaria
symptoms (present vs. absent).

example of mixture of within-subjects
and between subjects predictors:
prevalence of melanoma before / after
treatment (treatment is within subjects)
in different countries (between
subjects).
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e Exampleof Mc Nemar test (SPSS
Output 12.5).

example: from "Basic medical
statistics’ A.Bahn, Grune & Stratton
eds., N.Y. & London, 1972, p.240/

Results from skin testing 282 patients
with 2 types of penicillin placed on the
2 arms of each patient by random
allocation.

Critical information is provided by the
cases for which one of the 2 factorsis
active and the other not.

Difference between frequencies of
toxic reactions for the two penicillin
failsto reach significance (McNemar
%2 =0.12; p>.50). (SPSS: use the
Cochran’s Q command)

Strictly speaking 2 (z2) appliesto
continuous variables. When we use y2
for testing differences between counts
then we do asif the count was obtained
by rounding a continuous value. Ther-
sdifference might in fact be lesser than
it really is. If r comes from rounding r-
0.5 and if scomesfrom s+ 0.5thenr-s
isinfact 1 unit smaller or larger.

?onﬁi nuity correction: we subtract 1 to
r-s| Thisisa“conservative’
procedure because | r-4 might in fact
be 1 unit smaller than it redly is.
(With SPSS you get continuity
correction by using the McNemar
command)

penicillin G
react no
react
peni- react
cillin BT 10 16
no
react| 18 | 238
Compare 18 and 16.

As (18+16)/2=17 > 5, we
can use the McNemar test

McNemar =
(18-16)%/ (18+16) = 0.1176
% NS (p=.73)

Continuity correction
McNemar- corrected =

(| 18-16|-1)% (18+16) =
0.0294

%% NS (p =.86)
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e example of Binomial test (see
SPSS output 12.6)

31 medical students are given caffeine
(one day) and a placebo (another day).
22 sleep well both with caffeine and
placebo. 8 sleep well with placebo but
not with caffeine. 1 sleeps well with
caffeine but not with placebo. Does

caffeine have an effect on sleep quality
?

Placebo

Caffeine
sleep  sleep
well bad

sleep
well | 22 8
sleep
bad 1 0

As(8+1)/2=45<5,we
cannot use the McNemar test

Conclusion : caffeine affects sleep
quality (Binomial test; Sat p=.0391).

Binomial test: HO: n*t=4.5

P( (8 over 9/ n*t =4.5) or
(Lover 9/ n*t=45)) =

.0391
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EPI-INFO output 12.1

Command: statcalc, 2*2*n tables, F6, give file name (mh.txt),
typedata 1st stratum, enter, F5, F2,

type data 2nd stratum, enter, F5, F2,

typedata 3rd stratum, enter, F5

enter, F5, F6
F10 ...
+ Disease - Analysis of Single Table
oo oo + Odds ratio = 3.30 (0.49 <OR< 24.54%)
+ 6] 4] 10 Cornfield 95% confidence limits for OR
Fememnees +emeeneen + *Cornfield not accurate. Exact limits preferred.
-1 5] 11| 16 Relative risk = 1.92 (0.79 <RR< 4.66)
o Fommmeee + Taylor Series 95% confidence limits for RR
E 11 15 26 Ignore relative risk if case control study.
X
p Chi-Squares P-values
0 ...................
S Uncorrected : 2.08 0.1488556
u Mantel-Haenszel: 2.00 0.1569067
r Yates corrected: 1.07 0.3003814
e Fisher exact: 1-tailed P-value: 0.1504106

2-tailed P-value: 0.2279715

An expected cell value is less than 5.
Fisher exact results recommended.

F2 More Strata; <Enter> No More Strata; F10 Quit

+ Disease - Odds ratio = 1.25 (0.29 <OR< 5.22%)
oo +omemee- + Cornfield 95% confidence limits for OR
+ 5] 7| 12 *Cornfield not accurate. Exact limits preferred.
+omemee- +omemee- + Relative risk = 1.15 (0.54 <RR< 2.44)
-l 20| 35| 55 Taylor Series 95% confidence limits for RR
oo +omemee- + Ignore relative risk if case control study.
25 42 67

Chi-Squares P-values
Uncorrected : 0.12 0.7307388
Mantel-Haenszel: 0.12 0.7326783
Yates corrected: 0.00 0.9882324
Fisher exact: 1-tailed P-value: 0.4867171

2-tailed P-value: 0.7510270

® - cCcwooT XM

An expected cell value is less than 5.
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Fisher exact results recommended.

F2 More Strata; <Enter> No More Strata; F10 Quit

+ Disease - Odds ratio = 5.76 (1.62 <OR< 22.36%)
e e + Cornfield 95% confidence limits for OR
+ 19| 33| 52 *Cornfield not accurate. Exact limits preferred.
e e + Relative risk = 4.02 (1.48 <RR< 10.93)
-l 4] 40| 44 Taylor Series 95% confidence limits for RR
oo R EEEEE + Ignore relative risk if case control study.

E 23 73 96

X Chi-Squares P-values

p ___________________

o] Uncorrected : 9.86 0.0016931 [---

s Mantel-Haenszel: 9.75 0.0017903 [J---

u Yates corrected: 8.41 0.0037386 [J---

r

e F2 More Strata; <Enter> No More Strata; F10 Quit
+ Disease -

oo Fommmee- + *rxxx Stratified Analysis **xx*

+ 19| 33| 52 Summary of 3 Tables

B S +

-l 4] 40| 44 Crude odds ratio for all strata = 2.02

Fomme +omee + Mantel-Haenszel Weighted Odds Ratio = 3.09

E 23 73 96 Cornfield 95% Confidence Limits

X 1.40< 3.09< 6.73

p Mantel-Haenszel Summary Chi Square = 8.38

o} P value = 0.00379798 []---

s

u Crude RR for all strata = 1.61

r Mantel-Haenszel Weighted Relative Risk

e of Disease, given Exposure = 2.15

Greenland/Robins Confidence Limits =
1.29 < MHRR < 3.58

<Enter> for more; F10 to quit.
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Chapter 13. C assification Methods
Statistical Classification assigns subjects to categories in the absence of deterministic information. It

can be used to answer questions such as.

- isthe subject affected by some disease in the absence of totally reliable criteria (absence of
“golden standard” which istoo expensive for systematic measurements)? ;

- will the baby survive at birth (we do not know the issue with certitude before delivery)?

These are situations in which a set of predictors either quantitative or categorical can provide
probabilistic answers.

Only an outline of classification methods is presented here: Elements of Logistic classification, a

bit more on Discriminant analysis.

13.1 Logistic classification

Logistic regression can be used for assigning subjects to categories with asimple rule (with 2
categories):

if P(cat. 0) > 50%, then assign subject to cat. 0

if P(cat. 1) > 50%, then assign subject to cat. 1.

Example of logistic classification with data from Armitage (1971) "Statistical Methods in Medical
Research”(p.340): prediction of presence versus absence of hemolytic disease from measurements
of hemoglobin and bilirubin in a sample of 79 babies, among which 63 survived and 16 deceased.
(See SPSS output 13.1).

Hemoglobin is significant as predictor (p=.0006)whereas bilirubin is not (p=.1675).However both
were used for classification for the sake of comparison with Discriminant analysis (see below).
Outcomeis coded 1 for survival and O for decease. Overal PCC (Percent Correct Classification) is
92.41%. Sensitivity is 75.00%, specificity islarger and amounts to 96.93%. As arule, specificity is
lager than sensitivity with automatic classification when prevalence is below 50% in the sample.
The reason therefore is that the method gives more weight to the largest subsmaple (here survivors)
because it has alarger influence on goodness-of-fit. (Trivial situation: if there were only 1 deceased
then predicting survival for all 79 subjects would give 0% sensitivity but 100% specificity and 98.7
(78/79)PCC).

Sensitivity / specificity balance cannot be modified in SPSS Logistic regression procedure. Thisis
however possible in SPSS Discriminant Analysis, by giving prevalence a value different from the
sample value. Then the larger the prevalence, the larger the sensitivity vs. specificity. Technical
aspects of prevalence manipulation in SPSS Discriminant procedure are given below (see “Priors’
modification).
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SPSS Output 13.1

LOG STI C REGRESSI ON out cone

-> / METHOD=ENTER bi | i haeno

-> /CRITERI A PIN(.05) POUT(.10)

nunber of cases:
of sel ected cases:

Tot al
Nunmber
Nunber

Nunber
Nunmber
Nunber

of sel ected cases:

Dependent Vari abl e Encodi ng:

Ori gi nal I nt er nal
Val ue Val ue
, 00 0
1, 00 1

Dependent Vari abl e. . OUTCOVE

Begi nni ng Bl ock Number 0. [Initial
-2 Log Likelihood 79, 614946

* Const ant

Begi nni ng Bl ock Number 1. Method:
Vari abl e(s) Entered on Step Nunmber
1.. BI LI

HAEMO

Estimation term nated at iteration

| TERATE( 20)

79 (Unwei ght ed)
79
of unsel ected cases: 0

79

rej ected because of missing data: O
of cases included in the analysis:

79

Log Li kelihood Function

is included in the nodel.

Ent er

nunmber 5 because

Log Likelihood decreased by |ess than ,01 percent.

-2 Log Likelihood 39, 989
Goodness of Fit 206, 075
Chi - Squar e
Model Chi - Squar e 39, 626
| mpr ovenent 39, 626
Classification Table for OUTCOVE
Predi cted
, 00 1,00
0 1
Cbserved
, 00 0 12 4
1, 00 1 2 61
Overal |
Vari abl e B S. E.
BI LI -,4917 , 3562 1,
HAEMO , 5343 , 1561 11,
Const ant -2,3587 2,4790 ,

Variabl es in the Equation

df Significance

2 , 0000
2 , 0000

Percent Correct

75, 00%
96, 83%
92, 41%

vald  df Sig R Exp(B)
9056 1 ,1675 ,0000 6116
7173 1 ,0006 3494 1,7063
9053 1, 3414
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13.2 Discrimnant anal ysis

The purpose of discriminant analysisis to subdivide subjects into 2 or several groups as a function
of 2 or severa measurements (variables). The purpose is thus not to predict a continuous value
(regression), but well to predict the subject's category.

(Note: The problem makes sense only if a classification independent of the predictors under study is
available. Examples: authoritative but more arduous predictors; after alaps of time, nature itself
makes the difference between e.g. damage and recovery).

There are two steps towards the solution: First, to find the "best” linear combination of variables for
doing the job. Second, to find the best criteria for separating the subjects on the basis of the
combined values.

First step: The appropriate linear combination of variablesis called the "LINEAR DISCRIMINANT
FUNCTION":

y =a+bixq +boxp + ........bpXp
(y = discriminant score = D in SPSS)

Procedure for optimizing the b coefficients: the squared difference between the y scores of the 2
categories (let us suppose for the while that the subjects must be classified in only 2 categories) is
maximized by comparison with the intra-categorical variance of the scores. In other words:

maximization of the corresponding t2 or F ratio:

(Mycat1-Mycat2)?  between group var.,
EIGENVALUE= V2 = - S —
intragroup s, within group var.

Related discrimination coefficients:

between group SS
ETAZ = e = % explained var.
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within group SS
WILK'SLAMBDA = -------mmmmm-- = % of residua var.

Wilk's lambda decreases for better discrimination and we have:
Eta2 + Wilk'slambda= 1
When group means are equal (no discrimination at all), Eta2 = 0 and Wilk's lambda = 1.

Application condition: hypothesis of equal variances and covariances of predictors (x variables)
within groups.

(Mathematical procedure: solution of a set of n equations with n unknowns including the intra group
variances and covariances).

Second step: we are now back to a classification problem with asingle variable. They valueto be
used as boundary between categories will determine the sensitivity and specificity of the
classification. If we want to equalize these 2 coefficients, the criteria should be placed halfway
between the means of the 2 categories (o= (Mycat1 + Mycat2)/2). (Note: simple rule here because
equal variances). For other values of sensitivity and specificity, the Normal table can be used under
the assumption that y is Normally distributed within each category, a condition which isfulfilled if
the 2 intra-group (multivariate) distributions of y are Normal.

In the SPSS program, the discriminant boundary (yq) corresponds to ay value such that the
posterior probability of belonging to one group (e.g. diseased or D+) is equal to the posterior
probability of belonging to the other group (e;g; not diseased or D-):

p(D+lyg) = p(D-/yg).

With this boundary value, an item is classified in the group for which the posterior probability is the
largest. Where is this boundary located? This depends on the prior probabilities of the groups. If
priors are equa (PRIORS EQUAL in SPSS), then the boundary islocated halfway between the
group means. If the sizes of the groups in the sample are taken as estimations for the priors (PRIOR
SIZE in SPSS), then the boundary is closer to the mean of the smallest group. If P(D-) > P(D+), this
implies that sensitivity will be lower than specificity.
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Mathematical devel opment:

See p.30: Prior probability isfor the unconditional realization of an event (e.g. for a disease:

prevalence) whereas posterior probability is for the conditional realization (e.g. diseased if test is

positive).

If priors are equal (P(d+) = P(d-)), then the application of Bayes Theorem allows to state that:
p(D+/yg) = p(D-/yp) implies p(yp/D+) = p(yg/D-)

This means that the boundary is located at the intersection between the probability distributions of

D+ and D- over y.

If priors are not equal (e.g. P(d+) < P(d-)), then:

p(D+/yg) = p(D-/yg) implies p(yg/D+)*p(D+) = p(y/D-)* p(D-)
and:  p(yo/D+) = p(yo/D-)*p(D-)/p(D+)
as. p(D-)/p(D+)>1
we have: p(yo/D+) > p(yo/D-)

This means that the boundary is located closer to the mean of the probability distribution of D+ than
to the mean of the D- distribution.

Generalization to several categories

Severa discrimination functions may be required because a single function is usually not optimal
for separating all the categories.

Suppose afirst discriminant function has been obtained. The second function will be the one which
is not correlated with the first and which, together with the first, provides the best separation
between groups. And so on for the third, fourth ... function. The maximal number of discriminant

functionsis equal to the number of categories minus 1 (that is: k-1) or to n if k-1>n.
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Example of discriminant analysis from Armitage (1971) "Statistical Methods in Medical
Research(p.340): prediction of presence versus absence of hemolytic disease from measurements
of hemoglobin and bilirubin. (see SPSS OUTPUT 13.2)

EQUATION

discriminant function: y = -3.18 + .30* hemoglobin - .18*bilirubin

boundary line:
-1.28 = -3.18 + .30* haemglobin - .18*bilirubin
where -1.28 isavalue of y between mean y values for decease and survival groups and such that:
p(decease/-1.28) = p(survival/-1.28).
The boundary value (-1.28) is obtained by resolving for y in:
p(deceasely) = p(survivally).
From Bayes Theorem, thisisthe same as solving for y in:
p(y/decease)* p(decease) = p(y/survival)* p(survival).
Where p(decease) istaken as 16/79 and p(survival) as 63/79 (cf. SPSS PRIORS SIZE).

The suggested ruleis:

if y>-1.28, diagnosis = survival
if y <-1.28, diagnosis = decease

How to calculate the boundary value?
Let p(D+) = 16/79
p(y/decease)* p(decease) = p(y/survival)* p(survival)

p(y/ survival)/p(y/ decease) = 63/16
from Normal probability density formula (Chapt.3):

2
-Zd+/ 2
e
p(y/decease)/p(y/survival) = ——

2
-Zd-/ 2
e
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(-Zd+%12) + (2021 2) = In(63/16)

Zd+ =y —-1.73) (where-1.73 isthe mean y for D+; see SPSS ouput13.2)
Zd- =y -.44 (where 0.44 isthe mean y for D-; see SPSS output13.2)

-y + 1.73)2 + (y-.44)2 = 2In(63/16)
L(y2 + 2(L.73)y + 1.732) +(y2 -2(0.44)y + .44) = 2In(63/16)

y = (2An(63/16) +1.732 -.442) | -(2(1.73 +.44)) = 1.28

Formula: boundary = ((2In((p(D-)/ p(D+)) + myp+2 - myp_3) / -(2(-myp+ + myp.))
IF P(D+)=P(D-)

THEN

boundary = (myp++ +myp.)/2
That is, the boundary is then located halfway between the means of the two distributions.
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SPSS Output 13.2
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Fig.13.1. 79 cases plotted. As can be seen, hemoglobin level is higher for survivors whereas their

bilirubin level islower.

Exanpl e of discrinminant analysis on SPSS: sane data as above.

DSCRI M NANT GROUPS out cone (0,1) / VARIABLES heno bili
/ METHOD wi | ks /PRI ORS size/ STATISTICS 1 2 7 10 11 13 14 15.

Since ANALYSI S= was onmitted for the first analysis all variables
on the VARIABLES= list will be entered at |evel 1.

DI SCRI MI NANT ANALYSI S - -
79 (unwei ghted) cases will be used in the analysis.
Nunber of Cases by G oup

Nurmber of Cases
QUTCOVE Unwei ght ed Wei ghted Label

0 16 16.0
1 63 63.0
Tot al 79 79.0
G oup Means
QUTCOVE HEMO Bl LI
0 7.75625 4.83125
1 13. 89683 3.09048
Tot al 12. 65316 3. 44304

Group Standard Devi ations

QUTCOVE HEMO BI LI
0 3.09170 1. 34100
1 2.84168 1.24883
Tot al 3.79804 1. 44264
————————————————————————————————————————————————————————— On groups defined by QUTCOVE
Anal ysi s nunber 1

Stepwi se variabl e sel ection
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Selection rule: Mninmize WIks' Lanbda

Maxi mum nunber of steps.................. 4
M ni rum Tol erance Level .................. . 00100
MnimumF to enter....................... 1. 0000
Maxi mum F to renbve. ..................... 1. 0000

Canoni cal Discrimnant Functions

Maxi mum nunmber of functions.............. 1
M ni mum cunul ati ve percent of variance... 100.00
Maxi mum si gni fi cance of WIlks' Lanbda.... 1.0000

--------------------------------------------------------- Prior Probabilities

0 . 20253
1 . 79747
Tot al 1. 00000

---Variables not in the analysis after step 0 --------

M ni mum
Variable Tolerance Tolerance F to enter W1 ks' Lanbda
HEMO 1. 0000000 1.0000000 57.522 . 57240
BI LI 1. 0000000 1.0000000 24.074 . 76182
--------------------------------------------------------- At step 1, HEMO was included in the
anal ysi s.

Degrees of Freedom Signif. Bet ween G oups

W1 ks' Lanbda . 57240 1 1 77.0
Equi val ent F 57.5215 1 77.0 . 0000
---------------- Variables in the analysis after step 1 Variable Tolerance F to renove W ks'
Lanbda

HEMO 1. 0000000 57.522

---- Variables not in the analysis after step 1 ------- M ni mum
Variable Tolerance Tolerance F to enter W1 ks' Lanbda
Bl LI . 7886300 . 7886300 1. 4438 . 56173

Note for p=.05, F(1,77) = 3.95; thus 1.44 NS. However, BILI is included in the nodel because F > 1
(default option in SPSS, previous VERSIONS).

At step 2, BILI was included in the analysis.

Degrees of Freedom Signif. Bet ween G oups
W ks' Lanbda . 56173 2 1 77.0
Equi val ent F 29. 6484 2 76.0 . 0000

note eta?= 1-.56 = .44 = % expl ai ned variance by groups = between group SS/ total SS

------ Variables in the analysis after step 2 ---------Variable Tolerance F to renove W ks'
Lanbda

HEMO . 7886300 27.072 . 76182

BI LI . 7886300 1.4438 . 57240

F level or tolerance or VIN insufficient for further conputation.

Summary Tabl e

Action Vars W/ ks'
Step Entered Renoved I'n Lanmbda Sig. Labe
1 HEMO 1 . 57240 .0000

2 BILI 2 .56173 . 0000
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Canoni cal Discrimnant Functions

Pct of Cum Canonical After WIks'
Fcn Ei genval ue Variance Pct Corr Fcn Lanbda Chisquare DF Sig
: 0 . 5617 43. 832 2 .0000
1* . 7802 100 100 . 6620 :

note .66 = eta (.662 = .44)
* marks the 1 canonical discrimnant functions remaining in the analysis.

St andar di zed Canoni cal Discrimnant Function Coefficients

FUNC 1
HEMO . 87172
BI LI -.23225

Structure Matrix:

Pool ed-wi t hi n-groups correl ati ons between di scrimnating variabl es
and canonical discrimnant functions
(Variabl es ordered by size of correlation within function)

FUNC 1
HEMO . 97850
BI LI -. 63302

Unst andar di zed Canoni cal Discrimnmnant Function Coefficients

FUNC 1
HEMO . 3014171
Bl LI -.1832610

(constant) -3.182906

Not e: .3014171*sd (hermp) = .87172 ; sd (henp) = 2.59 = sqrt (weighted nean of intragroup variances)
= sqrt ((16*(3. 09)2 + 63*(2. 84)2)/79).

The unstandardi sed coefficient is multiplied by the SD of the predictor (Just as for regression)

Canoni cal Discrimnant Functions evaluated at G oup Means (G oup Centroids)

G oup FUNC 1
0 -1.73042
1 . 43947

Test of equality of group covariance matrices using Box's M

The ranks and natural |ogarithns of determinants printed are those
of the group covariance matrices.

G oup Label Rank Log Determ nant
0 2 2.719153
1 2 2. 255052
Pool ed Wt hi n- Groups
Covariance Matri x 2 2.360296
Box's M Approxi mate F Degrees of freedom Significance
1. 1422 . 36144 3, 10372.6 . 7809

note: discrimnant scores = D=y
if DL is the highest predicted group, then the highest P(DG = P(y/Dl), P(@D) = P(Dl/y), and the
2nd highest P(@D) = P(D0/y).

Case M s Act ual Hi ghest Probability 2nd Highest Discrim
Nurmber Val Sel G oup Goup P(DG P(ED) Group P(@ D) Scores
1 1 1 .1072 .9993 0 .0007 2.0504
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65 0 ** 1 .3466 .8432 0 .1568 -.5017
66 0 ** 1 1560 .6562 0 .3438 -.9792
67 0 ** 1 1374 .6228 0 .3772 -1. 0460
68 0 0 .7685 .5854 1 .4146 -1.4361
69 0 0 .8621 .6472 1 .3528 -1. 5567
70 0 0 .9816 .7376 1 .2624 -1.7535
71 0 0 .6397 .8808 1.1192 -2.1986
72 0 0 .7348 .8479 1 .1521 -2.0691
73 0 0 .6071 .8909 1.1091 -2.2447
74 0 0 .3840 .9465 1 .0535 -2.6010
75 0 0 .5001 .9203 1 .0797 -2.4048
76 0 0 .4626 .9294 1 .0706 -2.4650
77 0 0 .7128 .8560 1 .1440 -2.0985
78 0 0 .3280 .9571 1 .0429 -2.7086
79 0 0 .2533 .9696 1 .0304 -2.8728

Classification Results

Actual G oup Cases 0 1

G oup 0 16 12 4
75. 0% 25. 0%

G oup 1 63 3 60
4. 8% 95. 2%

Percent of "grouped" cases correctly classified: 91.14%
MEANS TABLES = di scorel by outcome / STATISTICS 1.

Summari es of DI SCOREL  FUNCTI ON 1 FOR ANALYSI S 1
By | evel s of QUTCOVE

Vari abl e Val ue Label Mean Std Dev Cases

For Entire Popul ation 6. 7457E-16 1. 3256692 79

QUTCOVE 0 -1.7304188 1.0420656 16

QUTCOVE 1 . 4394715 . 9895542 63
Total Cases = 79

Summari es of DI SCOREL FUNCTI ON 1 FOR ANALYSI S 1

By | evel s of QUTCOVE

Val ue Label Mean Std Dev Sum of Sq Cases
0 -1.7304188 1.0420656 16.2885095 16
1 . 4394715 . 9895542 60. 7114905 63
Wthin Goups Total 6. 7457E-16 1. 0000000 77.0000000 79
NOTE wei ght ed wei ght ed
nmean vari ance
about 0 about 1

(16*(1.04) 2+63*(.98)2)/79 = about 1



	01 CH1CORSE_content
	in MEDICINE and PUBLIC HEALTH
	MASTER in PUBLIC HEALTH METHODOLOGY

	Medical Statistics Lab.
	Willy SERNICLAES
	TABLE OF CONTENTS
	Module Planning
	Module
	Chapter 1. Basic Concepts
	This is illustrated in Fig.1 (Schwartz, p.42).
	Statistics in Medicine. T.Colton (1974) Boston: Little Brown Cy.
	Essentials of medical statistics. Kirkwood,B. (1998) . Oxford: Blackwell
	Statistical Methods in Medical Research. F.Armitage (1971)  Blackwell Scientific Pub.
	Statistical methods for rates and proportions. J.L.Fleiss (1981) New York: J.Wiley.
	Statistics. W.Hays (1988). New York: Holt, Rinehart & Wilson.
	Logistic Regression. D.G. Kleinbaum. (1994) New York: Springer.

	02 CH2CORSE_Sample description
	(   Central tendency parameters for ordinal variables: Mode and Median.
	For ordinal variables, the mode can also be used for obtaining the central tendency. But there is another possible parameter based on rank-order. The median is value such that 50 % of the (other) values in the sample are lower and 50 % are higher.
	The median is part of a family of parameters called percentiles.
	Percentiles 25, 50 and 75 are also called respectively first, second and third quartiles.
	Example: frequencies of family income in 13 categories (by courtesy of Prof. Lagasse)
	(   Central tendency parameters for quantitative variables: Mode, Median and Mean.
	(   Dispersion parameters for quantitative variables: Variance, Standard-deviation (SD), Skewness coefficients.
	( Boxplot graph: values inside the box are between P25 and P75 (50% of the distribution); small horizontal bars are the largest and smallest values which are not outliers; O points are values more than 1.5 boxlength below P25 or above P75; * points ar...
	(   Central tendency and dispersion parameters for binary variables: Proportions.

	03 CH3CORSE_Probability
	Chapter 3. Probability

	04 CH4CORSE_Confidence Intervals
	05 CH5CORSE_Conformity tests
	Chapter 5. Conformity tests for a single sample
	Example: conformity of mean weight at birth with a population value.
	Is our sample extracted from the same population as before ?
	H0 : ( =1
	Data: 100% cured in a sample of 30
	Pearson Chi-square for counts
	O is the observed count
	Null hypothesis (H0):  E  is the population count
	E
	Pearson Chi-square for proportions
	Ei
	Observed values: 14 and 87

	06 CH6CORSE_ Univariate sign. tests
	Are Sample Sizes fairly similar ?
	Kruskal-Wallis test
	if only 2 means : also T-test (or Mann-Whitney)
	YES
	NO

	07 CH7CORSE_univariate regression
	08 CH8CORSE_ sample size
	Chapter 8. Sampling Methods
	8.1 Concepts and methods
	8.2 Simple random sampling
	T = CnN = N ! / n! (N-n)!
	N !
	Procedure for simple random sampling
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple Random sampling
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple Random Sampling
	With EPI program (Statcalc/ sample size/ Population Survey)/
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple random sampling
	Sample size for hypothesis testing:
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple random Sampling
	EPI-INFO: STATCALC - SAMPLE SIZE & POWER -
	SPECIFICATION OF SAMPLE SIZE
	METHOD:Simple Random Sampling
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple random Sampling
	N - n
	N - 1
	N - n
	N - 1
	N z(2  (2
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple Random Sampling
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Simple Random Sampling
	Example: for (=15, d=5 mm Hg, (=1%, ß= 4%, r=1
	SPECIFICATION OF SAMPLE SIZE - SUMMARY TABLE
	SIMPLE RANDOM SAMPLING
	PROPORTIONS
	Finite Populations
	Single sample
	Single Sample
	Single sample
	Two Samples
	SPECIFICATION OF SAMPLE SIZE - SUMMARY TABLE
	SIMPLE RANDOM SAMPLING
	MEANS
	Single sample
	Single Sample
	Single sample
	Two Samples
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Systematic sampling
	VARIABLE: Qualitative or Quantitative
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Stratified sampling
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Stratified Sampling; proportional allocation
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Stratified Sampling; proportional allocation
	N z(2 ( (ns/n) (s2
	SPECIFICATION OF SAMPLE SIZE
	METHOD: Stratified Sampling; optimal allocation
	C= (ns Cs
	C Ns (s/(Cs
	Total cost= 68*500 + 64*250 = 34000 + 16000 = 50000
	SPECIFICATION OF SAMPLE SIZE

	09 CH9CORSE_Generalized Linear Model
	10 Ch10corse_Multifactorial ANOVA
	11 CH11COrse_Multiple linear regression
	12 CH12CORSE. Multilogistic Regr1
	13 Ch13corse_Classification Methods
	SPSS Output 13.2


